Supplementary of “Deep Generative
Model for Robust Imbalance Classifica-
tion”

Proof of Theorem 1 and 2

In this supplementary, we will theoretically analyze
the generalization error bounds of the proposed model.
Motivated by [3], we can define the generalization of in-
put feature and label generation process by measuring
the difference between the population real data distri-
bution (Preq;) and the corresponding generated data
distribution (Pg). The generalization error will be
acceptable if this population distance is close to the
empirical distance between the observed real data dis-
tribution (ﬁreal) and the corresponding generated data
distribution (Pg). In the proposed deep latent variable
model, given latent code Z, the input feature informa-
tion X is independent to input label Y, i.e., (X 1L Y|Z).
In this case, the data distribution (X,Y) ~ P,.. can be
factorized into two parts X ~ X,eqr and Y ~ Yyeqr, Sim-
ilar to P¢, Preq; and Pg.

Definition 2. For the empirical real distribution
(/ﬁeal, jml) with N training examples, a generated
distribution (.)Eg, Yo ) generalizes under the distribu-
tion distance d(-,-) with generalization error 41,82 > 0
if the following holds with high probability,
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E(X) and E(Y) indicate the population distance be-
tween the real and generated distribulions on feature
and label information respectively. E(X) and E(Y) are
the corresponding empirical distances.

Theorem 3. For any X € RP*YN (N, D > 0),
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holds with probability at least 1 — 01(61 > 0) over uni-

formly choosing an empirical version ()~() of X. Here,
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Proof 1. Since the entries in X are chosen indepen-
dently and uniformly, it is reasonable to assume each
d; = dx{"D %Dy is a random variable and satisfies
p(¢ > d; > 0) =1, where ( = max; d;. Hence, based on
the Hoeffding Inequality, we have p(|E(X) — E(X)| >
€) < exp(=2y< 2NE ). By setting ¢ = /'8%1¢2
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, we have
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Therefore, the error of generative model for feature in-
formation is bounded.

Theorem 4. Given prior label probabilities
{p1,...,pe,...,pc} (where p. = Py = ¢) and
N pe = 1) and the conditional latent variable

densities {fi, fz,...,fc} (where f. = f(zly = ¢)) ,
following [30], the error rate of generative classifier
can be formulated and bounded:
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Proof 2. According to the definition of €©, we can get
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Denote a, = p(y = ulz) and they are sorted in an
ascending order, i.e. ac = max{a.|S_1}, we have
> ay=1 and
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Let denote the marginal distribution of Z as
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According to the definition of Expectation, we know
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Obviously, 1 —ac < 6S,. By setting dy = 5u s €€ < 02

holds.



