
Discovering Human Interactions with Novel Objects via Zero-Shot Learning:
Supplementary Material

A. Architecture

Here we report the details of our proposed model.

Backbone Our model is built upon the ResNet50 [4] with
Feature Pyramid Network (FPN) [6]. Let {C2, C3, C4, C5}
denote the output of the last residual block of conv2, conv3,
conv4, and conv5 at ResNet50. FPN calculates a feature
pyramid {P2, P3, P4, P5, P6} based on {C2, C3, C4, C5},
where Pi is a feature map with 256 channels.

HO-RPN Given the feature pyramid {P3, P4, P5, P6}
from the backbone network, we use two separate branches
to generate human and object region proposals. The hu-
man branch uses the original region proposal network
(RPN) [10] with FPN. At each sliding window position,
specifically, 3 anchor boxes with different aspect ratios
{1:2, 1:1, 2:1} are generated. At each level in the feature
pyramid, we perform a 3× 3 convolution on Pi to obtain a
feature map Hi (with 256 channels), followed by two sib-
ling 1× 1 convolutions for classification and regression re-
spectively. Here the classification is to predict the score
of human anchor boxes and the regression is to adjust its
shape. Over all levels in the feature pyramid, the top K
(K = 8 in our experiments) human anchor boxes after the
non-maximum suppression (NMS) are kept.

In the object branch, similar to RPN, the first step is to
perform a 3 × 3 convolution on Pi to get a feature map Oi

(with 256 channels). Here we still use a 1 × 1 convolution
to regress the anchor boxes, while a relational network is
used to predict its score. Specifically, at each sliding win-
dow position, the relational network takes as input its 256-D
feature in Oi and the 256-D feature of top K human anchor
boxes from {Hi}, and outputs the score of 3 anchor boxes.
In Eq.(3), g(·) : R512 7→ R256 and f(·) : R256 7→ R3 are
both multi-layer perceptrons (MLPs). Over all levels in the
feature pyramid, the top 100 object region proposals after
NMS are kept.

Head Network The head network is used to recognize the
category of generated region proposals and further regress
the box. We use RoIAlign [3] to extract the feature of the
generated region proposals. To be compatible with novel
object categories, we use a class-agnostic regressor and de-

sign a zero-shot classification module upon the softmax
classifier of seen categories.

Zero-shot Classification Given a generated region pro-
posal, the softmax classifier first predicts the probability of
seen categories. If none of them have a score≥ 0.1, we then
estimate the probability of unseen categories using Eq.(5)
and Eq.(6). When estimating the semantic embedding e in
Eq.(5), the top 5 seen categories are used (please see Ap-
pendix D for more information). If the similarity of e to
any unseen category is less than 0.2, it will be seen as a
background, i.e., sy = 0,∀y ∈ Y .

Verb Prediction Given a human-object pair, we first ex-
tract the feature (1024-D) within the human bounding box,
object bounding box, and their union region using RoIAlign
(with 7× 7 resolution). For each verb v ∈ V , we use a sim-
ple MLP, hv(·) : R1024×3 7→ R, to predict its probability.

B. Training Details
The various modules in our proposed model are trained

jointly. The overall loss is the sum of (1) the binary clas-
sification loss and regression loss for the HO-RPN, (2) the
cross-entropy loss and regression loss for the head network,
(3) the binary classification loss for the verb prediction.

For training HO-RPN, we sample at most 64 anchor
boxes per image. The ratio of foreground boxes to back-
ground boxes is set to 1:1. If the box has an Intersection-
over-Union (IoU) ≥ 0.5 with the ground truth, it will be
seen as the foreground. For training the head network, we
sample at most 64 generated region proposals with a ratio of
1:1 of foreground boxes to background boxes. For training
the verb prediction module, we sample at most 16 human-
object pairs with a ratio of 1:1 of positives (i.e., the human
is interacting with the object) to negatives.

C. Seen/unseen Split
We simulate the zero-shot scenario on V-COCO [2] and

HICO-DET [1] datasets by partitioning the 80 MS-COCO
categories [7] into seen and unseen sets. Following
previous works [8, 9], we construct the split based on the
statistics of annotated HOI samples. Specifically, we sort
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Supercategory Category #samples cum. Supercategory Category #samples cum.

handbad 288 0.05 vase 84 0.02
suitcase 687 0.16 hair drier 102 0.05
tie 784 0.29 clock 222 0.11
backpack 1738 0.57 teddy bear 304 0.19

Accessory

umbrella 2624 1.00 toothbrush 454 0.32
zebra 43 0.01 scissors 469 0.44
bear 89 0.02

Indoor

book 2063 1.00
bird 313 0.06 bowl 135 0.03
cat 409 0.11 fork 295 0.09
cow 414 0.17 spoon 372 0.17
giraffe 420 0.22 wine glass 632 0.31
sheep 494 0.29 cup 797 0.48
elephant 862 0.40 bottle 968 0.69
dog 1145 0.55

Kitchen

knife 1457 1.00

Animal

horse 3404 1.00 stop sign 57 0.03
toaster 7 0.02 fire hydrant 139 0.10
microwave 28 0.10 traffic light 143 0.18
sink 71 0.29 parking meter 144 0.25
refrigerator 91 0.55

Outdoor

bench 1448 1.00
Appliance

oven 164 1.00 baseball glove 348 0.02
mouse 110 0.03 tennis racket 661 0.05
tv 219 0.09 surfboard 1350 0.13
remote 286 0.17 frisbee 1491 0.20
keyboard 340 0.26 kite 1709 0.30
laptop 1285 0.60 baseball bat 1768 0.39

Electronic

cell phone 1468 1.00 sports ball 1878 0.49
orange 60 0.01 skis 1933 0.60
broccoli 100 0.04 snowboard 2334 0.72
carrot 313 0.10

Sports

skateboard 5262 1.00
apple 354 0.18 truck 620 0.03
sandwich 418 0.27 train 670 0.07
hot dog 536 0.39 airplane 950 0.12
dount 537 0.51 car 1261 0.19
pizza 591 0.64 bus 1651 0.28
banana 694 0.79 boat 3285 0.46

Food

cake 959 1.00 motorcycle 4699 0.72
potted plant 73 0.02

Vehicle

bicycle 5202 1.00
toilet 179 0.06
bed 595 0.19
couch 859 0.38
chair 1293 0.67

Furniture

dining table 1476 1.00

Table 1: Our seen/unseen split. We sort classes per supercate-
gory in ascending order and calculate the cumulative percentage
(cum.). The rare 20% classes (highlighted by gray shade) are se-
lected as unseen.

classes per supercategory in ascending order based on the
number of samples in V-COCO train set and HICO-DET
train set. For each supercategory, we calculate the cumu-
lative percentage and select the 20% rare classes as unseen
classes. Table 1 reports our seen/unseen split.

D. Discussion on Zero-shot Classification

In Table 2, we study how many seen categories should
be considered in Eq.(5) when we estimate the semantic em-
bedding vector e. As e is used to detect novel objects, we
use the AP@IoU=0.5 over unseen object categories to in-
vestigate its effects. The experiments are conducted on V-
COCO val set. As shown, when only one seen category
is used, our method can only achieve an AP of 7.18. The
result increases to 12.49 when the top 3 seen categories are
used. At K = 5, our method achieves the best performance.
As more seen categories are considered (e.g., K = 7), the
performance slightly drops since unrelated categories may
be included. Hence, we choose K = 5 for the rest of the
experiments.

In Table 3, for each unseen category, we report the top 3
frequently used seen categories and their averaged weights
(after normalization) when estimating its semantic embed-

K 1 2 3 5 7

AP@IoU=0.5 7.18 11.98 12.49 12.55 12.53

Table 2: Experimental results of using various number of seen
categories in Eq.(5).

Unseen category Top 3 frequently used seen categories AP

airplane boat (0.367) person (0.217) bench (0.156) 0.6
apple banana (0.453) donut (0.188 ) cake (0.071) 26.1
baseball glove sports ball (0.475) baseball bat (0.297) chair (0.026) 4.7
bed couch (0.328) chair (0.310) dining table (0.129) 43.4
bird dog (0.329) baseball bat (0.162) horse (0.132 ) 3.5
bowl sports ball (0.439) baseball bat (0.236) cup (0.111) 2.0
broccoli pizza (0.421) sandwich (0.266) hot dog (0.079) 0.4
car bench (0.123) chair (0.113) dining table (0.076) 11.8
carrot umbrella (0.738) banana (0.086) cake (0.069) 0.0
cat dog (0.539) couch (0.068) hot dog (0.060) 1.1
cow horse (0.723) sheep (0.145) dog (0.026) 12.6
fire hydrant parking meter (0.894) skateboard (0.036) dog (0.013) 100.0
fork dining table (0.554) banana (0.186) umbrella (0.117) 3.6
frisbee sports ball (0.357) kite (0.171) umbrella (0.080) 26.6
handbag laptop (0.453) book (0.141) cell phone (0.083) 6.5
microwave refrigerator (0.396) oven (0.323) dining table (0.068) -
mouse keyboard (0.559) laptop (0.245) cell phone (0.076) 1.0
orange umbrella (0.599) tie (0.152) banana (0.151) 0.5
potted plant tie (0.487) book (0.375) cake (0.077) -
spoon knife (0.267) cup (0.150) cake (0.137) 1.9
suitcase backpack (0.702) chair (0.073) bench (0.027) 10.7
surfboard snowboard (0.312) boat (0.213) skateboard (0.205) 31.1
teddy bear umbrella (0.247) elephant (0.212) book (0.108) 12.1
toaster book (0.188) laptop (0.159) refrigerator (0.149) -
toilet bench (0.417) cell phone (0.163) sink (0.091) 0.2
train bus (0.785) bench (0.062) boat (0.039) 25.9
truck bus (0.348) boat (0.335) umbrella (0.057) 6.1
vase wine glass (0.268) book (0.228) dining table (0.146) -
zebra elephant (0.822) giraffe (0.044) horse (0.041) -

Table 3: The top 3 frequently used seen categories for each
unseen category. The results are evaluated on V-COCO val set.
Here we do not show the category “bear”, “hair drier”, etc., since
no prediction is made by our model for those unseen categories on
V-COCO val set.

ding e in Eq.(5). We observe that the unseen categories
are generally expressed by its semantically or functionally
similar object categories. For example, the unseen category
“bed” is expressed as the weighted sum of “couch”, “chair”,
and “dining table”; “cow” is expressed as the weighted sum
of “horse”, “sheep” and “dog”; “surfboard” is expressed
as the weighted sum of “snowboard”, “boat”, and “skate-
board”. For our method, having related seen categories is a
key factor for the success of detecting novel objects.

E. Human-Novel-Object Interactions
In Table 4, we show more details of our experiments

on human-novel-object interaction detection. Based on our
seen/unseen split, there are 199 human-novel-object in-
teractions on the HICO-DET dataset. We observe that 74
out of them are missing from our detections (i.e., an AP
of 0.0). In Table 4, we only show the first 20 missing in-
teractions (in alphabetical order). There are two possible
reasons for the missing detection. First, the verb predic-
tion is overfitted to a specific object category. For instance,
the verb “blocking” has 60 training samples, while all the
interacting objects are “sports ball”. In this case, our verb



Best 20 Interactions AP Worst 20 Interactions AP

feeding zebra 29.35 blocking frisbee 0.00
watching zebra 25.34 buying apple 0.00
lying on bed 20.69 buying orange 0.00
carrying surfboard 17.73 carrying carrot 0.00
operating microwave 17.39 carrying potted plant 0.00
washing car 17.17 carrying teddy bear 0.00
dragging suitcase 16.75 checking clock 0.00
feeding cow 15.18 controling tv 0.00
flying airplane 14.69 cooking carrot 0.00
holding broccoli 14.56 cutting carrot 0.00
holding surfboard 14.04 cutting orange 0.00
directing airplane 12.30 eating carrot 0.00
carrying suitcase 11.57 eating orange 0.00
catching frisbee 10.19 holding bowl 0.00
eating broccoli 10.07 holding carrot 0.00
eating apple 9.72 holding clock 0.00
carrying handbag 9.52 holding fork 0.00
throwing frisbee 9.09 holding hair drier 0.00
standing on surfboard 8.76 holding orange 0.00
wearing baseball glove 7.71 holding potted plant 0.00

Table 4: Human-novel-object detection. The best and worst 20
human-novel-object interactions detected by our model.

prediction module is overfitted to the interaction “blocking
sports ball”, resulting in the missing detection of “blocking
frisbee”. In comparison, the verb “feeding” have 5 differ-
ent object categories in the training set, i.e., “dog”, “horse”,
“sheep”, “elephant” and “giraffe”. In this case, our model
suffers less from the overfitting issue and can generalize
well to the interaction “feeding zebra”. Second, we ob-
serve that it is difficult for our model to detect some un-
seen categories, e.g., “carrot”, “bowl”, “orange”, etc. On
the one hand, it is because they are often small-scale ob-
jects. One the other hand, it is because no closely related
seen categories exist based on our seen/unseen split.
For instance, as shown in Table 3, “carrot” is expressed as
the weighted sum of dissimilar categories “umbrella”. “ba-
nana” and “cake”.

F. Visual Genome (VG) Test Set
Apart from simulating the zero-shot scenario by parti-

tioning the 80 MS-COCO object categories, we also con-
struct a test set from Visual Genome (VG) [5] with addi-
tional 30 novel object categories (see Table 5). Notice that
the words used to describe the human-object interactions
in the VG dataset are very different from the HICO-DET
dataset (which is used for training our model). For instance,
the annotations of the first image in Figure 1 are “reading
screen”, “playing piano”, “sitting on chair”, “seated at pi-
ano”, etc. However, “screen”, “playing”, “seated” are not
defined in HICO-DET dataset. Due to this mismatch, it is
difficult to provide the quantitive results on our collected
VG test set. For this reason, we mainly use qualitative eval-

No. Category name #images No. Category name #images

1 barrel 6 16 jetski 5
2 blender 13 17 lemon 5
3 box 30 18 microphone 32
4 bread 15 19 monitor 2
5 broom 5 20 newspaper 32
6 brush 9 21 paddle 46
7 camera 85 22 pail 4
8 carriage 30 23 pen 20
9 dolphin 8 24 piano 12
10 drum 4 25 pushcart 7
11 fishing pole 10 26 rose 5
12 flowers 11 27 tomato 5
13 guitar 23 28 tractor 4
14 gun 10 29 turkey 3
15 ipad 4 30 wheelchair 9

Table 5: Visual Genome test set.

uation. Figure 1 and Figure 2 show more qualitative results
of our proposed model. The interactions are depicted if its
score is greater than 0.5 for known objects and 0.2 for novel
objects.

References
[1] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and

Jia Deng. Learning to detect human-object interactions. In
WACV, 2018. 1

[2] Saurabh Gupta and Jitendra Malik. Visual semantic role la-
beling. arXiv preprint arXiv:1505.04474, 2015. 1

[3] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In The IEEE International Conference
on Computer Vision (ICCV), 2017. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

[5] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, Michael Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. 2016. 3

[6] T. Lin, P. Dollr, R. Girshick, K. He, B. Hariharan, and S.
Belongie. Feature pyramid networks for object detection. In
CVPR, 2017. 1

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV. 2014. 1

[8] Shafin Rahman, Salman Khan, and Nick Barnes. Po-
larity loss for zero-shot object detection. arXiv preprint
arXiv:1811.08982, 2018. 1

[9] Shafin Rahman, Salman Khan, and Nick Barnes. Transduc-
tive learning for zero-shot object detection. International
Conference on Computer Vision (ICCV), 2019. 1

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NIPS, 2015. 1



Figure 1: Qualitative results of our model on human-novel-object interaction detection. Seen object categories are highlighted by green,
while novel object categories are highlighted by red.



Figure 2: Qualitative results of our model on human-novel-object interaction detection. Seen object categories are highlighted by green,
while novel object categories are highlighted by red.


