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Figure 1: Our proposed RGB-DAVIS dataset. Shown images are screenshots of RGB videos (left) and event videos (right).
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Table 1: Details of our RGB-DAVIS dataset

. . indoor/ | camera | scene . L.
clip | # of images | # of events . . description
outdoor | motion | motion

#1 250 2.6M indoor v text displayed and animated on the monitor

#2 200 8.9M indoor v simple shapes displayed and animated on the monitor
#3 200 7.3M indoor v static objects with camera motion

#4 200 3.5M indoor v static objects with camera motion

#5 200 1.7M indoor v static objects with camera motion

#6 200 10.5M indoor v hand gestures

#7 150 2.4M indoor v textbook with background

#8 400 23.8M indoor v human body motion

#9 400 20.8M indoor v abruptly throwing an object
#10 400 21.8M indoor v color chart with hand-held motion
#11 200 3.8M outdoor v wall with grid structure
#12 190 3.6M outdoor v building with window
#13 200 4.3M outdoor v building
#14 400 9.3M outdoor v v car moving
#15 400 8.4M outdoor v v street with cars
#16 400 27.7M outdoor v v bird in a lake
#17 400 23.1M outdoor v v pedestrians walking on street
#18 400 22.6M outdoor v static objects with structured background
#19 400 20.7M outdoor v v bird on grass
#20 150 23.M outdoor v v a weeding worker in a park




1. RGB-DAVIS dataset

We use our RGB-DAVIS camera system to collect var-
ious sequences of RGB-event video clips. As shown in
Fig. 1, in total, there are 20 video clips. Both indoor and
outdoor scenarios are captured. The scenes widely range
from simple shapes to complex structures. All the clips in-
volve camera motion and/or scene motion. The details are
summarized in Table 1.

1.1. Geometric calibration

Here, we describe our calibration procedure between a
2448 x 2048 resolution machine vision camera (Point Grey
Chameleon3) with a F/1.4 lens and a 180 x 190 resolu-
tion event camera (Davis240b) with a F/1.4 lens. The two
cameras are physically co-located and they share a common
viewing direction through a beam splitter (Thorlabs CCM1-
BS013) with 50% splitting. In the calibration phase, the
two cameras are kept stationary. Our geometric calibration
is designed to geometrically transform event pixels to the
machine vision camera image within the shared view. For
this purpose, we display a blinking checkerboard pattern on
a 13.9” 60Hz monitor. The monitor is placed around 2m
away from the RGB-DAVIS imaging system to ensure both
cameras can have full view of the checkerboard pattern. To
form an event image, events are accumulated in a short time
window (no longer than the blinking period of the pattern).
On the machine vision camera, a 50fps video can be cap-
tured so as to select one frame with a stable checkerboard
pattern. The keypoints can be extracted from the corners of
the checkerboard images. Our 2D-based modeling includes
a homography transformation estimated based on the cen-
tral keypoints (inside the green box) and an anti-distortion
transformation estimated based on all the keypoints. The
distortion modeling is only for the event camera as the smart
phone camera distortion has already been calibrated.

The homography is an affine transformation defined as a
3 x 3 matrix. Mathematically, it connects two sets of coor-
dinates:

x! = Hx¢, (1)

where x! = [z],y!,1]T and x¢ = [25,y¢,1]T are the ho-
mogeneous coordinates in the intensity image and the event
image, respectively. H can be solved using a minimal of 4
points. In our implementation, we use more than 4 points
(8 points) to avoid linear degeneration. The homography is
estimated only applying to the central green area.

We use a radially symmetric model for distortion model-
ing:
= (¢ = 2)(1 + kar?)
= (y° =y (L + kyr?),
where z¢ and y¢ denote the distortion center. z“ and y,, are

the distortion corrected coordinates. 72 = (2¢)? + (y°)2.
ks and k,, are the distortion coordinates to be fitted.
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The two transformations are enclosed in a single
RANSAC loop to find the optimal solution that leads to
the overall error. The error is computed on the intensity
domain. Some unavoidable factors, such as slight deforma-
tion caused by camera movement and fluctuations in camera
frame rate, still affect the alignment of two camera views.
In dataset clips, video frames are fine-tuned by bicubic to
match 8 resolution of the event camera.

2. Comparison between CM and JCM

In addition to the summarized results presented in Fig. 3
of the main manuscript, we present additional visual com-
parisons in Fig. 2 and Fig. 3. We capture image patches and
use preset flow vectors to simulate events within a 50ms
time window. In this simulation, the bipolar thresholds are
set as ¢, = 0.2 and ¢, = —0.2, and standard deviation of
the threshold noise is 0, = 0.03. The polarity of events
is not used during the computation of warped histogram
[1]. The motion compensated results are shown in the sub-
figures (b) and (c) of Fig. 2 and Fig. 3. From the compar-
isons between subfigures (d) and (e) we can observe that the
contrast maps of JCM have faster fall-off departing from the
peaks than CM. The peak values also showcase more accu-
rate flow estimation results for JCM. In terms of speed and
efficiency, the JCM almost shares the same computational
cost as CM, while achieves more accurate flow.

3. Additional results of GEF

In this section, we present validation results on publicly
available datasets, e.g., DAVIS [6] and Color Event Dataset
(CED) [7]. We also provide detailed explanation of our
guided event super resolution processing steps and results.

3.1. Results on DAVIS dataset

The DAVIS [6] is a dataset containing intensity images
and events at the same resolution (240 x 180). Here, we
present additional denoise results for GEF with datas from
the DAVIS dataset [6]. Two examples of events denoising
are shown in Fig. 4 and Fig. 5. We compare the denoising
perforemance between Liu et al. [5], EV-gait [9] and the
proposed GEF, besides, the results of three candidate fliters
of the GEF are also compared. Finally, we choose the MS-
JF [8] as the optimal filter for the GEF.

3.2. Results on Color Event Dataset (CED)

GEF can be applied to color image and events. We
experiment on the recently released color event dataset [7].
The captured raw image is first demosaicked using the stan-
dard gradient-corrected linear interpolation to obtain RGB
image. The flow is computed based on the grayscale image
(converted from RGB) and all the captured events, which
means the same flow is used across all three channels. The
guided filtering process is run separately for each channel.
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Figure 2: First example of flow estimation. (b) and (c) denote the warped event image of the contrast maximization situation
of CM and JCM. The red dot of (d) and (e) denote the point of the preset flow.
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Figure 3: Second example of flow estimation. (b) and (c) denote the warped event image of the contrast maximization
situation of CM and JCM. The red dot of (d) and (e) denote the point of the preset flow.
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Figure 4: First denoise example of GEF on DAVIS [6] dataset. (b) An image overlaid with events (no warping); (c) An image
overlaid with warped events (warped by JCM); (d) Q' as filter guidance; (e) Q° as filter input; (f-g) denoise output using
Liu et al. [5] and EV-gait [9]; (h-j) GEF output using (h) GIF [2], (i) side-window guided filtering (SW-GF) [10], and (j)
mutual-structure joint filtering (MS-JF) [8].
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Figure 5: Second denoise example of GEF on DAVIS [6] dataset. (b) An image overlaid with events (no warping); (c) An
image overlaid with warped events (warped by JCM); (d) Q' as filter guidance; (¢) Q¢ as filter input; (f-g) denoise output

using Liu et al. [5] and EV-gait [9]; (h-j) GEF output using (h) GIF [2], (i) side-window guided filtering (SW-GF) [

(j) mutual-structure joint filtering (MS-JF) [8].
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Figure 6: GEF applied on color event dataset [7].

The results are shown in Fig. 6. From the results we can see
the effectiveness of GEF denoising across all three chan-
nels, but with different performance for each. The green
channel preserves more details than the red and blue chan-
nels (zoomed patches in Fig. 6).

4. Results for event super resolution

In this section, we describe our event super resolution
(SR) processing steps. Figure 7 and Fig. 8 present com-
parison results for 4x SR and 8x SR, respectively. In

], and

both figures, No guidance SR includes bicubic upsampling,
state-of-the-art SR algorithms EDSR [4] and SRFBN [3],
both w/o and w/ re-training. The re-trained models are de-
noted as EDSR-ev and SRFBN-ev, respectively. We prepare
700 HR-LR event image pairs simulated from nature image
dataset [3] to re-train the models.

The guided SR, w/ SR image corresponds to the ap-
proaches with intensity images as guidance. The same joint
filtering algorithm is applied between the super-resolved in-
tensity image and the event image. PSNR values indicate
that the guided SR results are better than no guidance SR
results. In the guided SR category, HR image as guidance
provides the highest performance, both quantitatively and
qualitatively.

For guided SR with HR image, we compare two strate-
gies. (1) Step-by-step upsampling for GEF. In order to ob-
tain the Q° (filtered output image) at 2x scale, the filter
output image at 1x scale is first bicubically upsampled, and
then serves as Q¢ at 2x to perform guided filtering. For 4 x
and 8 %, this procedure is iteratively applied. (2) directly up-
sampling for GEF. For 2, 4x and 8 x upsampling, the Q¢
at 1x is first bicubically upsampled to corresponding scales
and then filter with Q' computed at the same scales. The
comparison results are presented at the bottom right corner
of Fig. 7 and Fig. 8. As can be seen that Strategy (1) re-
sults in higher PSNR values for all 4x and 8 cases. In the
joint filtering process, with an 17-8700K CPU, the average
runtime is about 0.2s for 2 x upsampling a 180 x 190 frame
and 8s for 8x.
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Figure 7: First example of super-resolution results for 4 x upsampling. The numbers indicate the PSNR values.
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Figure 8: Second example of super-resolution results for 8 x upsampling. The numbers indicate the PSNR values.
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