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This supplementary document provides more details
about the basic framework for correspondence learning, in
addition to the concise description in Section 3.

The image similarity and transformation smooth-
ness losses: As shown in Fig. 1, to implement atlas-
based segmentation with deep convolutional neural net-
works (DCNNs), a generator network GF is employed
to learn the correspondences from the atlas to unlabeled
images, and two unsupervised loss functions—the image
similarity loss Lsim(u, ū) and the transformation smooth-
ness loss Lsmooth(∆pF )—are used to supervise the learn-
ing process. Minimizing Lsim encourages ū to approxi-
mate u , whereas minimizing Lsmooth regularizes ∆pF to
be smooth.

To introduce robustness against global intensity varia-
tions in medical images caused by the differences in manu-
facturers, scanning protocols, and reconstruction methods,
we adopt a locally normalized cross-correlation loss [8, 9]
to formate Lsim that encourages local coherence, which
has been proven to be highly effective in correspondence-
related tasks [8, 9]. Let fu(t) and fū(t) denote the func-
tions to calculate local mean intensities of the unlabeled
volume u and deformed atlas ū: fu(t) = 1

n3

∑
ti
u(ti)

and fū(t) = 1
n3

∑
ti
ū(ti), where ti iterates over a n3 cube

around position t in the volume, with n = 9 in our experi-
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ments (the same as [1]). Then Lsim(u, ū) is defined as:

Lsim(u, ū) =

−
∑
t∈Ω

(∑
ti

(
u(ti)− fu(t)

)(
ū(ti)− fū(t)

))2

(∑
ti

(
u(ti)− fu(t)

)2)(∑
ti

(
ū(ti)− fū(t)

)2) .
(1)

The smoothness constraint plays a key role in atlas-based
segmentation methods [8, 9]; it is also widely used in other
correspondence learning problems, such as optical flow es-
timation [6, 7] and stereo matching [5]. In addition, smooth-
ness regularization can be considered as a strategy to alle-
viate the overfitting problem while encoding the anatomi-
cal priori. Here, Lsmooth is formulated with the first-order
derivative of ∆pF :

Lsmooth(∆pF ) =
∑
t∈Ω

‖∇(∆pF (t))‖2, (2)

where t ∈ Ω iterates over all spatial locations in ∆pF , and
we approximate ‖∇(∆p(t))‖2 with spatial gradient differ-
ences between neighboring voxels along x, y, z directions
[1]:

‖∇(∆p(t))‖2 =
1

3
(‖∇x(∆p(t))‖2+

‖∇y(∆p(t))‖2 + ‖∇z(∆p(t))‖2).
(3)

The generative adversarial network (GAN) subnet:
Besides Lsim(u, ū) and Lsmooth(∆pF )—which are pretty
much the standard configuration in atlas-based segmenta-
tion problems [3] (e.g., they were used as the main losses
in VoxelMorph [1]), we introduce a GAN [2] into our basic
framework to offer additional supervision. The GAN subnet
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Figure 1: The overview of the basic framework for correspondence learning. It consists of a generator network GF to learn
the correspondences from the atlas to unlabeled images and two unsupervised losses, i.e., the image similarity loss Lsim(u, ū)
and the transformation smoothness loss Lsmooth(∆pF ). In addition, we introduce a generative adversarial network (GAN)
[2] into our basic framework to offer additional supervision.

Table 1: List of brain anatomical structures for segmenta-
tion from the CANDI dataset [4]. ‘*/*’ represents labels and
categories which consist of left (L) and right (R) structures.
Abbreviations: white matter (WM), cortex (CX), ventricle
(Vent), and cerebrospinal fluid (CSF).

Label Category Label Category
2/41 L/R-Cerebral-WM 11/50 L/R-Caudate
3/42 L/R-Cerebral-CX 12/51 L/R-Putamen
4/43 L/R-Lateral-Vent 13/52 L/R-Pallidum
7/46 L/R-Cerebellum-WM 14 3rd-Vent
8/47 L/R-Cerebellum-CX 15 4rd-Vent

10/49 L/R-Thalamus-Proper 16 Brain-Stem
17/53 L/R-Hippocampus 24 CSF
18/54 L/R-Amygdala 28/60 L/R-VentralDC

in our framework comprises GF and an additional discrim-
inator network D (see Fig. 1). A vanilla GAN would make
the discriminator D differentiate ∆pF from the true under-
lying correspondence map. In practice, however, it is usu-
ally infeasible to obtain the true correspondence between a
pair of clinical images. Instead, we make D distinguish ū
from u . In this sense, ū serves as a delegate of ∆pF , and
GF is trained to generate ∆pF that can be used to synthe-
size ū authentically enough to confuse D; meanwhile, D
becomes more skilled at flagging synthesized images. This
delegation strategy provides indirect supervision to GF and
∆pF , and allows the networks to be trained end-to-end with
a large number of unlabelled images.
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