Supplementary Material for LT-Net: Label Transfer by Learning Reversible Voxel-wise Correspondence for One-shot Medical Image Segmentation

Shuxin Wang^{* 1,2}, Shilei Cao^{* 2}, Dong Wei^{* 2}, Renzhen Wang⁴, Kai Ma², Liansheng Wang^{† 1}, Deyu Meng^{3,4} and Yefeng Zheng^{† 2}

¹ Xiamen University ² Jarvis Lab, Tencent

³ Macau University of Science and Technology ⁴ Xi'an Jiaotong University

sxwang@stu.xmu.edu.cn, lswang@xmu.edu.cn, {eliasslcao, donwei, kylekma, yefengzheng}@tencent.com,

wrzhen@stu.xjtu.edu.cn,dymeng@mail.xjtu.edu.cn

This supplementary document provides more details about the basic framework for correspondence learning, in addition to the concise description in Section 3.

The image similarity and transformation smoothness losses: As shown in Fig. 1, to implement atlasbased segmentation with deep convolutional neural networks (DCNNs), a generator network G_F is employed to learn the correspondences from the atlas to unlabeled images, and two unsupervised loss functions—the image similarity loss $\mathcal{L}_{sim}(u, \bar{u})$ and the transformation smoothness loss $\mathcal{L}_{smooth}(\Delta p_F)$ —are used to supervise the learning process. Minimizing \mathcal{L}_{sim} encourages \bar{u} to approximate u, whereas minimizing \mathcal{L}_{smooth} regularizes Δp_F to be smooth.

To introduce robustness against global intensity variations in medical images caused by the differences in manufacturers, scanning protocols, and reconstruction methods, we adopt a locally normalized cross-correlation loss [8, 9] to formate \mathcal{L}_{sim} that encourages local coherence, which has been proven to be highly effective in correspondence-related tasks [8, 9]. Let $f_u(t)$ and $f_{\bar{u}}(t)$ denote the functions to calculate local mean intensities of the unlabeled volume u and deformed atlas \bar{u} : $f_u(t) = \frac{1}{n^3} \sum_{t_i} u(t_i)$ and $f_{\bar{u}}(t) = \frac{1}{n^3} \sum_{t_i} \bar{u}(t_i)$, where t_i iterates over a n^3 cube around position t in the volume, with n = 9 in our experi-

[†]Corresponding authors.

ments (the same as [1]). Then $\mathcal{L}_{sim}(u, \bar{u})$ is defined as:

$$\mathcal{L}_{sim}(u, u) = -\sum_{t \in \Omega} \frac{\left(\sum_{t_i} \left(u(t_i) - f_u(t)\right) \left(\bar{u}(t_i) - f_{\bar{u}}(t)\right)\right)^2}{\left(\sum_{t_i} \left(u(t_i) - f_u(t)\right)^2\right) \left(\sum_{t_i} \left(\bar{u}(t_i) - f_{\bar{u}}(t)\right)^2\right)}.$$
(1)

The smoothness constraint plays a key role in atlas-based segmentation methods [8, 9]; it is also widely used in other correspondence learning problems, such as optical flow estimation [6, 7] and stereo matching [5]. In addition, smoothness regularization can be considered as a strategy to alleviate the overfitting problem while encoding the anatomical priori. Here, $\mathcal{L}_{\text{smooth}}$ is formulated with the first-order derivative of Δp_F :

$$\mathcal{L}_{\text{smooth}}(\Delta p_F) = \sum_{t \in \Omega} \|\nabla(\Delta p_F(t))\|_2, \quad (2)$$

where $t \in \Omega$ iterates over all spatial locations in Δp_F , and we approximate $\|\nabla(\Delta p(t))\|_2$ with spatial gradient differences between neighboring voxels along x, y, z directions [1]:

$$\|\nabla(\Delta p(t))\|_{2} = \frac{1}{3} (\|\nabla_{x}(\Delta p(t))\|_{2} + \|\nabla_{y}(\Delta p(t))\|_{2} + \|\nabla_{z}(\Delta p(t))\|_{2}).$$
(3)

The generative adversarial network (GAN) subnet: Besides $\mathcal{L}_{sim}(u, \bar{u})$ and $\mathcal{L}_{smooth}(\Delta p_F)$ —which are pretty much the standard configuration in atlas-based segmentation problems [3] (e.g., they were used as the main losses in VoxelMorph [1]), we introduce a GAN [2] into our basic framework to offer additional supervision. The GAN subnet

^{*}Equal contributions. Shuxin Wang contributed to this work during an internship at Tencent.

Figure 1: The overview of the basic framework for correspondence learning. It consists of a generator network G_F to learn the correspondences from the atlas to unlabeled images and two unsupervised losses, i.e., the image similarity loss $\mathcal{L}_{sim}(u, \bar{u})$ and the transformation smoothness loss $\mathcal{L}_{smooth}(\Delta p_F)$. In addition, we introduce a generative adversarial network (GAN) [2] into our basic framework to offer additional supervision.

Table 1: List of brain anatomical structures for segmentation from the CANDI dataset [4]. '*/*' represents labels and categories which consist of left (L) and right (R) structures. Abbreviations: white matter (WM), cortex (CX), ventricle (Vent), and cerebrospinal fluid (CSF).

Label	Category	Label	Category
2/41	L/R-Cerebral-WM	11/50	L/R-Caudate
3/42	L/R-Cerebral-CX	12/51	L/R-Putamen
4/43	L/R-Lateral-Vent	13/52	L/R-Pallidum
7/46	L/R-Cerebellum-WM	14	3^{rd} -Vent
8/47	L/R-Cerebellum-CX	15	4^{rd} -Vent
10/49	L/R-Thalamus-Proper	16	Brain-Stem
17/53	L/R-Hippocampus	24	CSF
18/54	L/R-Amygdala	28/60	L/R-VentralDC

in our framework comprises G_F and an additional discriminator network D (see Fig. 1). A vanilla GAN would make the discriminator D differentiate Δp_F from the true underlying correspondence map. In practice, however, it is usually infeasible to obtain the true correspondence between a pair of clinical images. Instead, we make D distinguish \bar{u} from u. In this sense, \bar{u} serves as a delegate of Δp_F , and G_F is trained to generate Δp_F that can be used to synthesize \bar{u} authentically enough to confuse D; meanwhile, Dbecomes more skilled at flagging synthesized images. This delegation strategy provides indirect supervision to G_F and Δp_F , and allows the networks to be trained end-to-end with a large number of unlabelled images.

References

[1] Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, and Adrian V. Dalca. VoxelMorph: A learning framework for deformable medical image registration. *IEEE Trans. Medical Imaging*, 2019.

- [2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.
- [3] Juan Eugenio Iglesias and Mert R Sabuncu. Multi-atlas segmentation of biomedical images: A survey. *Medical Image Analysis*, 24(1):205–219, 2015.
- [4] David N. Kennedy, Christian Haselgrove, Steven M. Hodge, Pallavi S. Rane, Nikos Makris, and Jean A. Frazier. CAN-DIShare: A resource for pediatric neuroimaging data. *Neuroinformatics*, 10(3):319–322, Oct. 2011.
- [5] Hsueh-Ying Lai, Yi-Hsuan Tsai, and Wei-Chen Chiu. Bridging stereo matching and optical flow via spatiotemporal correspondence. In *Proc. IEEE Conf. Computer Vision and Pattern Recognition*, pages 1890–1899, 2019.
- [6] Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsupervised learning of optical flow with a bidirectional census loss. In *Proc. AAAI Conf. Artificial Intelligence*, pages 7251– 7259, 2018.
- [7] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and Wei Xu. Occlusion aware unsupervised learning of optical flow. In *Proc. IEEE Conf. Computer Vision and Pattern Recognition*, pages 4884–4893, 2018.
- [8] Zhenlin Xu and Marc Niethammer. DeepAtlas: Joint semisupervised learning of image registration and segmentation. In Proc. Int'l Conf. Medical Image Computing and Computer Assisted Intervention, pages 420–429, 2019.
- [9] Amy Zhao, Guha Balakrishnan, Fredo Durand, John V. Guttag, and Adrian V. Dalca. Data augmentation using learned transformations for one-shot medical image segmentation. In *Proc. IEEE Conf. Computer Vision and Pattern Recognition*, pages 8543–8553, 2019.