
Supplementary Material:
MineGAN: effective knowledge transfer from GANs to target domains with few

images

A. Architecture and training details
MNIST dataset. Our model contains a miner, a gener-

ator and a discriminator. For both unconditional and con-
ditional GANs, we use the same framework [2] to design
the generator and discriminator. The miner is composed of
two fully connected layers with the same dimensionality as
the latent space |z|. The visual results are computed with
|z| = 16; we found that the quantitative results improved
for larger |z| and choose |z| = 128. We randomly initialize
the weights of each miner following a Gaussian distribution
centered at 0 with 0.01 standard deviation, and optimize the
model using Adam [4] with batch size of 64. The learning
rate of our model is 0.0004, with exponential decay rates of
(β1, β2) = (0.5, 0.999).

In the conditional MNIST case, label c is a one-hot vec-
tor. This differs from the conditioning used for BigGAN [1]
explained in Section 3.3. Here we extend MineGAN to this
type of conditional models by considering each possible
conditioning as an independently pretrained generator and
using the selector to predict the conditioning label. Given
a conditional generator G(c, z), we consider G(i, z) as Gi

and apply the presented MineGAN approach for multiple
pretrained generators on the family {G(i, z)| i = 1, ..., N}.
The resulting selector now chooses among the N classes of
the model rather than among N pretrained models, but the
rest of the MineGAN training remains the same, including
the training of N independent miners.

CelebA Women, FFHQ Children and LSUN (Tower
and Bedroom) datasets. We design the generator and dis-
criminator based on Progressive GANs [3]. Both networks
use a multi-scale technique to generate high-resolution im-
ages. Note we use a simple miner for tasks with dense
and narrow source domains. The miner comprises out of
four fully connected layers (8-64-128-256-512), each of
which is followed by a ReLU activation and pixel normal-
ization [3] except for last layer. We use a Gaussian distri-
bution centered at 0 with 0.01 standard deviation to initial-
ize the miner, and optimize the model using Adam [4] with
batch size of 4. The learning rate of our model is 0.0015,
with exponential decay rates of (β1, β2) = (0, 0.99).

FFHQ Face and Anime Face datasets. We use the
same network as [5], namely SNGAN. The miner consists
of three fully connected layers (8-32-64-128). We randomly
initialize the weights following a Gaussian distribution cen-
tered at 0 with 0.01 standard deviation. For this additional
set of experiments, we use Adam [4] with a batch size of
8, following a hyper parameter learning rate of 0.0002 and
exponential decay rate of (β1, β2) = (0, 0.9).

Imagenet and Places365 datasets. We use the pre-
trained BigGAN [1]. We ignore the projection loss in the
discriminator, since we do not have access to the label of the
target data. We employ a more powerful miner in order to
allocate more capacity to discover the regions related to tar-
get domain. The miner consists of two sub-networks: miner
Mz and minerM c. BothMz andM c are composed of four
fully connected layers of sizes (128, 128)-(128, 128)-(128,
128)-(128, 128)-(128, 120) and (128, 128)-(128, 128)-(128,
128)-(128, 128)-(128, 128), respectively. We use Adam [4]
with a batch size of 256, and learning rates of 0.0001 for
the miner and the generator and 0.0004 for the discrimina-
tor. The exponential decay rates are (β1, β2) = (0, 0.999).
We randomly initialize the weights following a Gaussian
distribution centered at 0 with 0.01 standard deviation.

The input of BigGAN [1] is a random latent vector and a
class label that is mapped to an embedding space. We there-
fore have two miner networks, the original one that maps to
the input latent space (Mz) and a new one that maps to the
latent class embedding (M c). Note that since we have no
class label, the miner (M c) needs to learn what distribution
over the embeddings best represents the target data.

B. Evaluation metric details
Similarly to [6], we compute FID between 10,000 ran-

domly generated images and 10,000 real images, if possi-
ble. When the number of target image exceeds 10,000, we
randomly select a subset containing only 10,000. On the
other hand, if the target set contains fewer images, we cap
the amount of randomly generated images to this number to
compute the FID. Note we also consider KMMD to evalu-
ate the distance between generated images and real images
since FID suffers from instability on small datasets.

1 2 3 4
Layers

90

95

100

105

FI
D

Figure 9: FID values for different number of fully con-
nected layers in the miner. Results are based on the pre-
trained BigGAN with target class Arch.

Method MineGAN (mean) MineGAN (max)

Car 0.51 0.34
Bus 0.49 0.66

Table 4: Estimated probabilities pi for {Car, Bus} → Red vehi-
cles for MineGAN with mean or max in Eqs. (5) and (6). The
actual data distribution is 0.3:0.7 (ratio cars:buses).

C. Ablation study

In this section, we evaluate the effect of each indepen-
dent contribution to MineGAN and their combinations.

Selection strategies. We ablate the use of the max oper-
ation in Eqs. (5) and (6), and replace it with a mean opera-
tion. We call this setting MineGAN (mean). In this case the
backpropagation is not only performed for the image with
the highest critic score but for all images. We hypothesized
that the max operation is necessary to correctly estimate the
probabilities used by the selector. We report the results in
Table 4, where we refer to our original model as MineGAN
(max). The probability distribution predicted by the selec-
tor indicates that MineGAN (mean) equally chooses both
pretrained models on Car and Bus, while MineGAN suc-
cessfully estimates the class distribution of the target data.

Miner Architecture. We performed an ablation study for
different variants of the miner based on pretrained BigGAN.
The miner always contains only fully connected layers, but
we experiment with varying the number of layers. In Fig. 9,
we show the results on off-manifold target class Arch from
Places365 [8]. Using more layers increases the performance
of the method. Besides, we find that the results of both 3 and
4 layers are similar, indicating that adding additional lay-
ers would only result in slight improvements for our model.
Therefore, in this paper, we use miners with 4 fully con-
nected layers.

Figure 10: Results for unconditional off-manifold genera-
tion of digits ‘6’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’.

D. MNIST experiment

We expand the MNIST experiments presented in Sec-
tion 5.1 by providing a quantitative evaluation and includ-
ing results on conditional GANs. As evaluation measures,
we use FID (Section 5) and classifier error [7]. To com-
pute classifier error, we first train a CNN classifier on real
training data to distinguish between multiple classes (e.g.
digit classifier). Then, we classify the generated images that
should belong to a particular class and measure the error as
the percentage of misclassified images. This gives us an es-
timation of how realistic and accurate the generated images
are in the context of targeted generation.

Table 5 presents the results for both unconditional and
conditional models, using a noise length of |z| = 128. The
relatively low error values indicate that the miner manages
to identify the correct regions for generating the target dig-
its. The conditional model offers better results than the un-
conditional one by selecting the target class more often. We
can also observe that the off-manifold task is more difficult
than the on-manifold task, as indicated by the higher eval-
uation scores. However, the off-manifold scores are still
reasonably low, indicating that the miner manages to find
suitable regions from other digits by mining local patterns
shared with the target. Overall, these results indicate the ef-
fectiveness of mining on MNIST for both types of targeted
image generation. In addition, in Fig. 10 we have added
a visualization for the off-manifold MNIST classes which
were not already shown in Fig. 2.

E. Further results on CelebA

We provide additional results for the on-manifold ex-
periment CelebA→FFHQ women in Fig. 11, and the off-
manifold CelebA→FFHQ children in Fig. 12. In addition,
we have also performed an on-manifold experiment with
CelebA→CelebA women, whose results are provided in
Fig. 13.

d
On-manifold Off-manifold

Unconditional Conditional Unconditional Conditional

0 13.4 / 2.5 12.6 / 0.7 21.3 / 2.8 15.6 / 1.1
1 13.1 / 1.7 12.6 / 1.9 15.9 / 2.5 14.8 / 2.1
2 14.6 / 6.3 12.8 / 2.7 23.1 / 5.2 18.2 / 3.6
3 14.1 / 10.1 13.3 / 1.6 22.8 / 7.3 14.2 / 1.5
4 14.7 / 6.4 13.4 / 1.2 23.4 / 6.3 15.3 / 4.2
5 13.1 / 9.3 11.7 / 2.1 21.9 / 10.9 17.2 / 5.7
6 13.4 / 2.8 14.3 / 1.8 24 / 3.1 15.8 / 1.6
7 12.9 / 3.2 14.2 / 1.8 24.8 / 4.9 16.3 / 2.6
8 14.2 / 7.5 14.7 / 5.5 25.7 / 9.8 18.7 / 5.6
9 11.3 / 6.8 11.2 / 2.9 12.5 / 7.4 16.3 / 3.5

Average 13.5 / 5.7 13.1 / 2.2 21.5 / 6.0 16.2 / 3.2

Table 5: Quantitative results of mining on MNIST, expressed as
FID / classifier error.

F. Further results for LSUN
We provide additional results for the experiment ({Bus,

Car}) → Red vehicles in Fig. 16 and for the experiment
{Bedroom, Bridge, Church, Kitchen} → Tower/Bedroom
in Fig. 17. When applying MineGAN to multiple pretrained
GANs, we use one of the domains to initialize the weights
of the critic. In Fig. 17 we used Church to initialize the critic
in case of the target set Tower, and Kitchen to initialize the
critic for the target set Bedroom. We found this choice to be
of little influence on the final results. When using Kitchen to
initialize the critic for target set Tower results change from
62.4 to 61.7. When using Church to initialize the critic for
target set Bedroom results change from 54.7 to 54.3.

References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis. In
ICLR, 2019.

[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In NeurIPS, pages 5767–5777, 2017.

[3] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. ICLR, 2017.

[4] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2014.

[5] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. In ICLR, 2018.

[6] Atsuhiro Noguchi and Tatsuya Harada. Image generation
from small datasets via batch statistics adaptation. ICCV,
2019.

[7] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari.
How good is my gan? In ECCV, pages 213–229, 2018.

[8] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. In NeurIPS, pages 487–
495, 2014.

On-manifold (target:women)

TransferGAN MineGAN(w/o FT) MineGANPretrained

ed

d

ed

Figure 11: (CelebA→FFHQ women). Based on pretrained Progressive GAN.

On-manifold (target:children)

TransferGAN MineGAN(w/o FT) MineGANPretrained

Off-manifold (target: children)

Figure 12: (CelebA→ FFHQ children). Based on pretrained Progressive GAN.

Off-manifold (target:women)

TransferGAN MineGAN(w/o FT) MineGANPretrained

On-manifold(target: women)

Figure 13: (CelebA→CelebA women). Based on pretrained Progressive GAN.

Real0 320 1600 3200 60004800 7200
Figure 14: (Top) 100 women faces from HHFQ dataset. (Bottom) training of model from scratch: the images start with low
quality and iteratively overfit to a particular training image. Red boxes identify images which are remembered by the model
trained from scratch or from TransferGAN (see Fig. 4). Based on pretrained Progressive GAN.

Figure 15: 100 children faces from HHFQ dataset. Red boxes identify images which are remembered by the model trained
from scratch (see Fig. 4). Based on pretrained Progressive GAN.

ined

MineGAN

 (w/o FT)
MineGAN TransferGAN

 (car)

 TransferGAN

 (bus)

Target: red vehicle

Figure 16: ({bus, car}) →red vehicles. Based on pretrained Progressive GAN.

Pretrained
Pretrained

Pretrained

Scratch TransferGAN (livingroom)MineGAN(w/o FT) MineGAN Scratch MineGAN(w/o FT) MineGAN TransferGAN (church)
Target: tower Target: bedroom

Figure 17: Results for unconditional GAN. (Top) (Livingroom, kitchen, bridge, church)→Tower. (Bottom) (Livingroom, kitchen, bridge,
church)→Bedroom. Based on pretrained Progressive GAN.

