
Supplementary Materials for
“Neural Pose Transfer by Spatially Adaptive Instance Normalization”

Jiashun Wang1∗‡ Chao Wen1∗§ Yanwei Fu1†‡ Haitao Lin1 Tianyun Zou1 Xiangyang Xue1 Yinda Zhang2†

1Fudan University 2Google LLC

We provide details about network architecture, imple-
mentation details, comparison to more baselines, model
analysis, and more results on various datasets.

A. Network Architecture

The network architecture is shown in Tab. 3, where N
is the batch size and V is the number of vertices. Our net-
work consists of two main parts - the pose feature extractor
(1-9) and the style transfer decoder for pose transfer (10-
17). Both components are composed of 1 × 1 convolu-
tion and instance normalization. The detailed architecture
of SPAdaIN Resnet Block and SPAdaIN unit are given in
Tab. 1 and Tab. 2.

Different from most of other work that uses batch nor-
malization, we use instance normalization. Specifically, we
consider our input 3D mesh M ∈ RN×3×V as a tensor and
apply normalization individually for each training instance
along the spatial dimension V . Furthermore, as mentioned
in Sec 3.3 of the main submission, we learn the parameters
γ ∈ RN×C×V and β ∈ RN×C×V of InstanceNorm which
keep the spatial information.

Index Inputs Operation Output shape
(1) Input Identity Mesh N×3×V
(2) Input Input Features N×C×V
(3) (1), (2) SPAdaIN 1 (C=C) N×C×V
(4) (3) conv1d(C→C, 1× 1), Relu N×C×V
(5) (1), (4) SPAdaIN 2 (C=C) N×C×V
(6) (5) conv1d(C→C, 1× 1), Relu N×C×V
(7) (1), (2) SPAdaIN3 (C=C) N×C×V
(8) (7) conv1d(C→C, 1× 1), Relu N×C×V
(9) (5), (8) Add N×C×V

Table 1: The network architecture for SPAdaIN Res-Block.

∗indicates equal contributions.
†indicates corresponding author.
‡Yanwei Fu and Jiashun Wang are with School of Data Science, and

MOE Frontiers Center for Brain Science, Shanghai Key Lab of Intelligent
Information Processing Fudan University.
§Chao Wen is with Academy of Engineering and Technology, and In-

stitute of AI and Robotics, Fudan University

Index Inputs Operation Output shape
(1) Input Identity Mesh N×3×V
(2) Input Input Features N×C×V
(3) (1) conv1d(3→C, 1× 1) N×C×V
(4) (1) conv1d(3→C, 1× 1) N×C×V
(5) (2) Instance Norm N×C×V
(6) (3), (5) Multiply N×C×V
(7) (4), (6) Add N×C×V

Table 2: The network architecture for SPAdaIN unit.

B. Data Preparation
We prepare our training and testing data using SMPL [8]

model. SMPL [8] model has 10 morphology parameters
controlling the shape and 24 sets of joint parameters con-
trolling the pose. For shape parameters, we randomly sam-
ple from the parameter space. For pose parameters, each
set of parameters has three sub-parameters represented as a
tuple (x, y, z), indicating rotated joint angle around x-axis,
y-axis and z-axis respectively. In order to generate natural
looking poses, we constrain the rotation angle of the joints
according to what human joints can physically reach. Then
we sample from the constrained angle space. The details of
the range can be seen in Tab. 5.

C. Comparison to Baselines
In this section, we design and evaluate some competitive

baselines.

C.1. Comparison to Skeleton Pose Driven Approach

We compare our method with skeleton-based skinning
shape deformation. We first extract human pose skele-
ton from both the pose and identity meshes by fitting an
SMPL [8] model. We take the T-pose SMPL as the initial-
ization, and update the SMPL parameters through gradient
descent using LBFGS [7]. We use the joints of this fitted
model as the key points of our skeleton representation. We
then calculate the binding weights of LBS (Linear Blend
Skinning) [9, 6, 4, 5] using tools from Baran et al. [1]. After
that, we transform the identity skeleton to the pose skeleton.



Index Inputs Operation Output Shape
(1) Input Identity Mesh N×3×V
(2) Input Pose Mesh N×3×V
(3) (1) conv1d(3→64, 1× 1) N×64×V
(4) (3) Instance Norm, Relu N×64×V
(5) (4) conv1d(64→128, 1× 1) N×128×V
(6) (5) Instance Norm, Relu N×128×V
(7) (6) conv1d(128→1024, 1× 1) N×1024×V
(8) (7) Instance Norm, Relu N×1024×V
(9) (2), (8) Concatenate N×1027×V

(10) (9) conv1d(1027→1027, 1× 1) N×1027×V
(11) (10) SPAdaIN ResBlk 1 (C=1027) N×1027×V
(12) (11) conv1d(1027→513, 1× 1) N×513×V
(13) (12) SPAdaIn ResBlk 2 (C=513) N×513×V
(14) (13) conv1d(513→256, 1× 1) N×256×V
(15) (14) SPAdaIN ResBlk 3 (C=256) N×256×V
(16) (15) conv1d(256→3, 1× 1) N×3×V
(17) (16) tanh N×3×V

Table 3: The network architecture for our full model.

Pose Source
PMD ↓ (×10−4)

skeleton maxpooling ours

seen-pose 27.4 2.1 1.1
unseen-pose 31.1 12.7 9.3

Table 4: Quantitative comparison to other baselines.

Since the skeleton joints of SMPL model assemble a kine-
matic tree, we calculate the transformation matrix between
two skeletons according to the connection relationship of
the joints through the local coordinate system. Finally, we
recover the mesh from skeleton using the binding weights
computed before.

We show the quantitative result in Tab. 4. According to
the table, the skeleton based approach cannot perform as
well as our method due to the accumulated error at each
stage. Particularly, this method has trouble dealing with
varying limb length caused by body shape variations. Qual-
itative evaluation is shown in Fig. 1. The skeleton based
deformation approach often produces artifacts near joint
points, due to different limb lengths.

C.2. Comparison to Compact Pose Feature

We also create a strong deep learning baseline. Instead of
maintaining the per-vertex feature on the pose mesh, we ap-
ply a global max pooling as suggested in PointNet to extract
a compact global pose feature. This feature is then concate-
nated with each vertex in the identity mesh, and further fed
into the decoder. Note that we need to remove the first in-
stance normalization in the decoder to make this work, oth-

erwise the instance normalization would whitening all the
pose feature as they are exactly the same on all the vertices.

The quantitative result is shown in Tab. 4. As can be
seen, this baseline works much better than the skeleton
based deformation, but not as good as our method. One pos-
sible reason could be that the global max pooling may drop
some fine-grained information from the pose mesh which is
helpful for pose transfer.

D. More Qualitative Results
In this section, we show more qualitative results to

demonstrate the robustness and generalization capability of
our system.

D.1. Invariance to Vertex Order

To the best of our knowledge, our model is the first one
that achieves permutation invariance on the order of ver-
tices in both input meshes. That says, the identity mesh can
be provided in arbitrary pose and vertex order. We verify
the model behavior with random permutation, and the re-
sults are shown in Fig. 3. For each example one the left and
right, we randomly shuffle the vertex order in both the iden-
tity and pose mesh, and feed them into the same network
(we use the color to encode the vertex order). As can be
seen, our network successfully produces visually the same
target mesh with correct identity and pose. Note that for
each random shuffle, the output vertex order is the same as
the identity mesh. This indicates that the deformed mesh are
point-wise aligned with the initial identity mesh, which can
be very useful for many graphics applications, e.g. texture
transfer.



Figure 1: Qualitative comparison to other baselines. From left to right, we show in each row: input identity mesh, input
pose mesh, the results of skeleton pose driven approach, the results of max pooling method, our results and the ground truth.
We have more accurate results.

Figure 2: Camel and horse pose transfer.

D.2. Robustness to Pose Mesh Noise

We test the robustness of our system given noisy mesh.
In Fig. 4, we provide our model pose meshes in the same
pose but with different shape and noise level. Our network
successfully extracts the correct pose information and pro-
duces final output mesh in the correct pose.

D.3. Generalization to New Identity

We also test the generalization capability of our model
to unseen identities, especially those non-SMPL model
meshes. In Fig. 5, we show more results on identity meshes
from FAUST dataset [3]. Our model generalizes to these
meshes automatically without any finetune. Features that
not measured by SMPL, such as the mustache of the man in
the first row, are successfully maintained.

We also try more challenging cases using meshes from
MG-dataset [2]. The meshes in this dataset contains ap-
parel, which are more different with SMPL meshes com-
pared to those from the FAUST [3]. As can be seen in Fig. 6,
though with some small artifacts, our model still maintains
the identity, i.e. person and apparel, correctly.

D.4. Our Results on Seen and Unseen Poses

We show more qualitative results of our model on seen
and unseen poses in Fig. 7 and Fig. 8 respectively.

D.5. Our Results on Non-Human Models

In the end, we show the results of our model on transfer-
ring pose from camel to horse in Fig. 2, by training on the
animal dataset [10]. We adopt the compact pose feature en-
coder to handle different vertices number between identity
mesh and pose mesh, and then using our decoder to trans-
fer pose for non-human meshes. Even though we specifi-
cally focus on human, our model also works for non-human
meshes but require domain-specific training.



Parameter Index
Rotation Degree of Axes

x-axis y-axis z-axis

1 (-2,2) (-2,2) (-2,2)
2 (-90,0) 0 (0,40)
3 (-90,0) 0 (-40,0)
4 (-1,1) (-1,1) (-1,1)
5 (0,100) 0 0
6 (0,100) 0 0
7 (-1,1) (-1,1) (-1,1)
8 (-10,10) (-10,10) (-1,1)
9 (-10,10) (-10,10) (-1,1)

10 (-1,1) (-1,1) (-1,1)
11 (-1,1) (-1,1) (-1,1)
12 (-1,1) (-1,1) (-1,1)
13 (-3,3) (-3,3) (-3,3)
14 0 (-30,30) (-30,30)
15 0 (-30,30) (-30,30)
16 (-3,3) (-3,3) (-3,3)
17 0 (-30,30) (-30,30)
18 0 (-30,30) (-30,30)
19 0 (-60,0) 0
20 0 (0,60) 0
21 (-10,10) (-10,10) (-10,10)
22 (-10,10) (-10,10) (-10,10)
23 (-5,5) (0,10) (-10,0)
24 (-5,5) (-10,0) (0,10)

Table 5: Pose parameters preparation. Human posture
can be easily adjusted by rotating 24 key joints represented
as parameter index. We give more details of the range of
angles of each pose parameter. We randomly sample in this
pose space to generate our input data.

References
[1] Ilya Baran and Jovan Popović. Automatic rigging and ani-

mation of 3d characters. In ACM Transactions on graphics

(TOG), volume 26, page 72. ACM, 2007. 1

[2] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt,
and Gerard Pons-Moll. Multi-garment net: Learning to dress
3d people from images. In IEEE International Conference on
Computer Vision (ICCV). IEEE, Oct 2019. 3, 8

[3] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J. Black. Faust: Dataset and evaluation for 3d mesh
registration. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2014. 3, 7

[4] Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović,
and Olga Sorkine. Fast automatic skinning transformations.
ACM Transactions on Graphics (TOG), 31(4):77, 2012. 1

[5] Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine.
Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph., 30(4):78, 2011. 1

[6] John P Lewis, Matt Cordner, and Nickson Fong. Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proceedings of the 27th an-
nual conference on Computer graphics and interactive tech-
niques, pages 165–172. ACM Press/Addison-Wesley Pub-
lishing Co., 2000. 1

[7] Dong C Liu and Jorge Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical program-
ming, 45(1-3):503–528, 1989. 1

[8] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):248, 2015. 1

[9] Paul Molodowitch. The pinocchio auto-rigging /
weighting tool. https://github.com/elrond79/
Pinocchio. 1

[10] Robert W Sumner and Jovan Popović. Deformation transfer
for triangle meshes. ACM Transactions on graphics (TOG),
23(3):399–405, 2004. 3

https://github.com/elrond79/Pinocchio
https://github.com/elrond79/Pinocchio


Figure 3: More qualitative results of different vertex order. Each row represents one vertices order with respect to input
identity mesh, pose mesh and our results. Our results are consistent with the identity mesh. Different orders of the inputs do
not affect the output visually. For all meshes, the vertex color represents the vertex order. For the first 3 rows, vertices are
colored according to the index→color mapping, and for the last row, vertices are colored according to the value of the index.



Figure 4: Robustness to different pose meshes. The pose meshes in the same pose with different shape or the pose meshes
with different level of noise would not influence the result. Our method can produce similar and correct output.



Figure 5: More examples of identity mesh from FAUST [3]. (a) Identity input meshes. (b) Output meshes using our
methods. Our method can deform the identity mesh to various poses with good visual quality.



Figure 6: More examples of identity mesh from MG-dataset [2]. (a) Identity input meshes (b) Output meshes using our
methods. Though the appearance of MG-dataset [2] wearing clothes is quite different from meshes of SMPL, our method
can still produce very good results.



Figure 7: More examples of seen poses. From left to right, we show in each row: input identity mesh, input pose mesh, the
results of ours and the ground truth.



Figure 8: More examples of unseen poses. From left to right, we show in each row: input identity mesh, input pose mesh,
the results of ours and the ground truth.


