
Supplementary Materials
The supplementary material provides intuitive expla-

nations of our approach (Section A), network dissec-
tion results to understand the change in feature redun-
dancy/expressiveness (Section B), deep metric learning per-
formance to understand the generalizability (Section C),
proof of Lemma 1 (Section D) and visualizations of filter
similarities (Section E).

A. Intuitive Explanations of our Approach

We analyze a convolution layer which transforms input
X to output Y with a learnable kernelK: Y = Conv(K,X)
in CNNs. Writing in linear matrix-vector multiplication
form Y = KX (Fig.2(b) of the paper), we simplify the
analysis from the perspective of linear systems. We do not
use im2col form Y = KX̃ (Fig.2(a) of the paper) as there is
an additional structured linear transform from X to X̃ and
this additional linear transform makes the analysis indirect.
As we mentioned earlier, the kernel orthogonality does not
lead to a uniform spectrum.

The spectrum of K reflects the scaling property of the
corresponding convolutional layer: different input X (such
as cat, dog, and house images) would scale up by η = ‖Y ‖

‖X‖ .
The scaling factor η also reflects the gradient scaling. Typ-
ical CNNs have highly non-uniform convolution spectrum
(Fig.1(b) of the paper): for some inputs, it scales up to 2;
for others, it scales by 0.1. For a deep network, these irreg-
ular spectrums add up and can potentially lead to gradient
exploding and vanishing issues.

Features learned by CNNs are also more redundant due
to the non-uniform spectrum issues (Fig.1(a) of the paper).
This comes from the diverse learning ability to different im-
ages and leads to feature redundancy. A uniform spectrum
distribution could alleviate the problem.

To alleviate the problem, we propose to make convo-
lution orthogonal by enforcing K orthogonal. Orthogonal
convolution regularizer in CNNs (OCNNs) leads to uniform
K spectrum as expected. It further reduces the feature re-
dundancy and improves the performance (Fig.1(b)(c)(d) of
the paper).

Besides classification performance improvements, we
also observe improved visual features, both in high-level
(image retrieval) and low-level (image inpainting) tasks.
Our OCNNs also generates realistic images (Section 4.6)
and is more robust to adversarial attacks (Section 4.7).

B. Network Dissection

We demonstrate in Section 4 that our orthogonal convo-
lutions reduce the feature redundancy by decorrelating dif-
ferent feature channels and enhancing the feature expres-
siveness with improved performance in image retrieval, in-
painting and generation. Network dissection [6] is utilized
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Figure 10. Percentage of unique detectors (mIoU≥ 0.04) over dif-
ferent layers. Our OCNN has more unique detectors compared to
baseline ResNet34 [24] at each layer.

to further evaluate the feature expressiveness across differ-
ent channels.

Network dissection [6] is a framework that quantifies the
interpretability of latent representations of CNNs by evalu-
ating the alignment between individual hidden units and a
set of semantic concepts. Specifically, we evaluate the base-
line and our OCNN with backbone architecture ResNet34
[24] trained on ImageNet. The models are evaluated on
Broden [6] dataset, where each image was annotated with
spatial regions of different concepts, including cat, dog,
house, etc. The concepts are further grouped into 6 cat-
egories: scene, object, part, material, texture and color.
Network dissection framework compares the mean inter-
section over union (mIoU) between network channel-wise
activation of each layer and ground-truth annotations. The
units/feature channels are considered as “effective” when
mIoU≥ 0.04. We denote them as “unique detectors”.

Our OCNN (Table 10 and Fig.10) have more unique de-
tectors over different layers of the network. Additionally,
the distribution of 6 concept categories is more uniform for
our OCNN (Fig.11). The results imply that orthogonal con-
volutions reduce feature redundancy and en chance the fea-
ture expressiveness.

Table 10. Number of units/feature channels with mIoU ≥ 0.04
comparisons on ImageNet ILSVRC [14].

conv2 conv3 conv4 conv5
ResNet34 [24] 6 13 47 346
OCNN (ours) 6 14 57 365

C. Deep Metric Learning

We evaluate the generalizability and performance of our
our orthogonal regularizer in deep metric learning tasks.
Specifically, following the training/evaluation settings in
[41], we perform retrieval and clustering on Cars196 dataset
[34] and summarize the results in Table 11). We observe
performance gain when orthogonal regularizer is added.
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Figure 11. Distribution of concepts of unique detectors of different
layers. Our OCNN has more uniform concept distribution com-
pared to baseline ResNet34 [24].

Table 11. Retrieval/clustering performance on Cars196 (%).

NMI F1 Recall@1 @2 @4 @8
Triplet loss [28] 61.9 27.1 61.4 73.5 83.1 89.9
ProxyNCA [41] 62.4 29.2 67.9 78.2 85.6 90.6
[41]+Kernel orth 63.1 29.6 67.6 78.4 86.2 91.2

[41]+OCNN 63.6 30.2 68.8 79.0 87.4 92.0

D. Proof of the Orthogonality Equivalence

Here we provide a proof for the lemma 1: The row or-
thogonality and column orthogonality are equivalent in the
MSE sense, i.e. ‖KKT − I‖2F = ‖KTK− I ′‖2F +U , where
U is a constant. A simple motivation for this proof is that
when K is a square matrix, then KKT = I ⇐⇒ KTK =
I ′. So we can hope to generalize this result and provide a
more convenient algorithm. The following short proof is
provided in the supplementary material of [37]. We would
like to present it here for the reader’s convenience.

Proof. It’s sufficient to prove the general result, where we
choose K ∈ RM×N to be an arbitrary matrix2. We denote
‖KKT − IM‖2 as Lr and ‖KTK − IN‖2 as Lc.

Lr = ‖KKT − IM‖2F
= tr

[
(KKT − IM )T (KKT − IM )

]
= tr(KKTKKT )− 2tr(KKT ) + tr(IM )

= tr(KKKTK)− 2tr(KTK) + tr(IN ) +M −N
= tr

[
KTKKTK − 2KTK + IN

]
+M −N

= tr
[
(KTK − IN )(KTK − IN )

]
+M −N

= ‖KTK − IN‖2F +M −N
= Lc + U

where U = M −N .

E. Filter Similarity visualizations

As shown in Fig.1, filter similarity increases with depth
of the network. We visualize the guided back-propagation
patterns to understand this phenomenon.

2Here M and N are just some constant, different from the the ones
used in the main text.

Figure 12. Guided back-propagation patterns of the input image
(first column) with a ResNet34 model. The first row depicts pat-
terns of the first 3 channels from layer 7, while the second row
depicts patterns of the first 3 channels from layer 33. The filter
similarity increases with depth.

For the ResNet34 trained on ImageNet, we plot guided
back-propagation patterns of an image in Fig.12. The first
row depicts patterns of the first 3 channels from layer 7,
while the second row depicts patterns of the first 3 channels
from layer 33. Patterns of different channels from earlier
layers are more diverse, while patterns of different channels
from later layers usually focus on certain regions. The filter
similarity increases with depth.




