
Supplementary Material
In this Supplementary Material, we will further detail the

following aspects omitted in the main paper. The detailed
code guide and VC features can be referred to https://
github.com/Wangt-CN/VC-R-CNN.

• Section A: the detailed derivation of the intervention
in Section 3.1 Causal Intervention of the main paper .

• Section B: The details of our proposed implementation
in Section 3.2 of the main paper.

• Section C: The details of the network architecture of
our VC R-CNN in Section 4 in the main paper.

• Section D: more quantitative results of VC features
concatenated on on different Faster R-CNN based rep-
resentations.

• Section E: more qualitative visualizations compared
our VC features with previous bottom-up representa-
tions [1].

A. The Do-Expression
In our main paper, we give the do-expression Eq. (2)

comparing with the Bayes rule in an intuitive way for easier
understanding. In this section, we further formally explain
and prove the intervention (do calculus) in causal theory
which is applied in our VC R-CNN.

Do-expression

Figure 1. The do expression P (Y |do(X)) with a graph surgery.
Nodes denote variables and arrows mean the direct causal effects.

As written in our main paper, in our visual world there
may exists many “background factors” z ∈ Z, no matter
known or unknown, that affect (or cause) either X or/and
Y , leading to spurious correlations by only learning from
the likelihood P (Y |X). To avoid the confounder as shown
in Figure 1, the causal intervention (do calculus) is achieved
by cutting off the effect from Z to X in the form of a graph
surgery. Here for clear clarification, we use P and Pm to
distinguish the probabilities in the causal graph before and
after surgery, respectively. Therefore, due to the definition
of the Do-expression we can have:

P (Y |do(X)) = Pm(Y |X). (Definition) (1)

Then the key to compute the causal effect lies in the obser-
vation Pm, the manipulated probability, shares two essential
properties with P (i.e., the original probability function that
prevails in the preintervention model). First, the marginal
probability P (Z = z) is invariant under the intervention,
because the process determining Z is not affected by remov-
ing the arrow from Z to X , i.e., P (z) = Pm(z). Second,
the conditional probability P (Y |X, z) is invariant, because
the process by which Y responds to X and Z remains the
same, regardless of whether X changes spontaneously or by
deliberate manipulation:

Pm(Y |X, z) = P (Y |X, z). (Invariance) (2)

Moreover, we can also use the fact that Z and X are inde-
pendent under the intervention distribution. This tell us that
Pm(z|X) = Pm(z). Putting these considerations together,
we have:

P (Y |do (X)) = Pm (Y |X)

=
∑

z
Pm (Y |X, z)Pm (z|X) (Bayes Rule)

=
∑

z
Pm (Y |X, z)Pm (z) (Independency)

=
∑

z
P (Y |X, z)P (z) ,

(3)

where P (Y |X, z) denotes the conditional probability given
X and confounder z and P (z) is a prior probability of each
object class.

The Eq. (3) is called the adjustment formula, which com-
puted the association between X and Y for each value z of
Z, then averages over all values. This procedure is referred
to as “adjusting for Z” or “controlling for Z”. Then with
this final expression, we can measure the casual effects be-
tween X to Y directly from the data, since it consists only
of conditional probabilities.

Moreover, in the main paper to show the difference be-
tween Bayes Rule and Intervention clearly, we propose
an example about person and toilet by comparing
P (Z) and P (Z|toilet) on partial labels. Here in the
Supplementary Material we present the integrated figure
for whole 80 MS-COCO labels on both P (Z), P (Z|X)
and P (Y |X,Z)P (Z),P (Y |X,Z)P (Z|X) in Figure 2 & 3.
From Figure 2 we can see that the do intervention achieves
“borrow” and “put” by applying P (Z) to replace P (Z|X),
which can be also regarded as a kind of method to alleviate
the previous long tail distribution (blue line).

B. Our Proposed Implementation
B.1. Normalized Weighted Geometric Mean.

In our main paper we just give the application of Normal-
ized Weighted Geometric Mean (NWGM) due to the limited
space, here we present the detailed derivation and reader can

https://github.com/Wangt-CN/VC-R-CNN
https://github.com/Wangt-CN/VC-R-CNN
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Figure 2. The case study of the differences between P (z|Toilet and P (z) from whole MS-COCO ground-truth object labels. Note that
confounders that never appeared with X (i.e., Toilet) is not contained.
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Figure 3. The case study of the differences between P (Person|Toilet, z)P (z|Toilet) and P (Person|Toilet, z)P (z) from whole
MS-COCO ground-truth object labels. Note that confounders that never appeared with X (i.e., Toilet) is not contained.

also refer to the [8]. Recall that in the main paper we have
defined the RoI feature x as the X , one of its context class
label yc as Y . For the confounder set Z, we denote it as a
global confounder dictionary Z = [z1, ...,zN ] in the shape
of N × d matrix for practical use, where N is the category
size in dataset (e.g., 80 in MS-COCO) and d is the feature
dimension of x.

Here we first introduce the normalized weighted geomet-
ric mean in our softmax class label prediction:

NWGM[fy(x, z)] =

∏
z exp(fy(x, z))p(z)∑

j

∏
z exp(fy(x, z))p(z)

=
exp(Ez[fy(x, z)])∑
j exp(Ez[fy(x, z)])

= Softmax(Ez[fy(x, z)]),

(4)

where fy(·) calculates the logits for N categories. Note that
the subscript y denotes that f(·) is parameterized by feature
y, motivated by the heuristics that the context prediction

task for RoI Y is characterized by its visual feature. We
can see that the most ingenious operation in Eq. (4) is to
change the production

∏
to the sum

∑
by putting it into

the exp. Moreover, from the results in [8, 2, 7], we know
NWGM[fy(x, z)] ≈ Ez[Softmax(fy(x, z))] under the soft-
max activation. Therefore Eq. (3) in the main paper can be
further derived as:

P (Y |do(X)) ≈ Softmax(Ez[fy(x, z)]). (5)

Furthermore, we use the linear model fy(x, z) = W1x +
W2 · gy(z), where W1,W2 ∈ RN×d denote the fully
connected layer. Then the linear projection of the ex-
pectation of one variable equals to the linear projection
of that and we can put E into the linear projection as
Softmax(W1Ez[x] +W2 · Ez[gy(z)])). Since the RoI rep-
resentation x remains the same, we can discard the E over
x, i.e., Softmax(W1x+W2 · Ez[gy(z)])). That means the
expectation of the outputs over all possible confounder z
can be simply computed by feedforward propagation with



Index Input Operation Output Trainable Parameters
(1) - RoI feature x (1024× 1) -
(2) - RoI feature y (1024× 1) -

(3) (2), Z Scale Dot-Product Attention Ez[gy(z)] (1024× 1)
W3 (512× 1024)
W4 (512× 1024)

(4) (1),(3) Linear Addition Model Ez[fy(x, z)] (80× 1)
W1 (80× 1024)
W2 (80× 1024)

(5) (1) Feature Embedding Wx (80× 1) W (80× 1024)
(6) (5) Self Predictor Softmax -
(7) (4) Context Predictor Softmax -

Table 1. The detailed network architecture of our VC R-CNN.

the expectation vector Ez[gy(z)] as the input.

B.2. Neural Causation Coefficient (NCC)

Here we give a more detailed information about the us-
age of NCC and collider of our proposed implementations
in the main paper. In our visual world sometimes there are
no confounders in the structure like X → Z ← Y what
we call “collider”, as shown in Figure 4. Felix Elwert and
Chris Winship [4] have illustrated this junction using three
features of Hollywood actors: Talent (X), Celebrity (Z),
and Beauty (Y ). Here we are asserting that both talent and
beauty contribute to an actor’s success, but beauty and tal-
ent are completely unrelated to one another in the general
population.

Figure 4. The causal graph structure of the “col-
lider”. Nodes denote variables, arrows denote
the direct causal effects.

In this structure making the intervention on variable Z
(i.e., condition on Z) would create a spurious dependence
between X and Y . The reason is that if X and Y are inde-
pendent to begin with, conditioning on Z will make them
dependent. For example, if we look only at famous actors
(in other words, we observe the variable Celebrity = 1), we
will see a negative correlation between talent and beauty:
finding out that a celebrity is unattractive increases our be-
lief that he or she is talented. This negative correlation is
sometimes called collider bias or the “explain-away” effect.
Therefore we cannot make the intervention as what we do
before in the collider structure. For simplicity we would
make a preliminary examination before training to elimi-
nate the effect of collider in the whole dataset. We apply
the neural causation inference model (NCC) [6] to detect
the strong causal effect from X → Z and Y → Z with the
RoI feature directly.

NCC has partly proven [6] to be efficient for transfer-
ring to real-world, visual cause-effect observational sam-
ples with just training on artificially constructed synthetic

observational samples. Specifically, the n synthetic obser-
vational samples Si = {(xij , yij)}mi

j=1 are drawn from an
heteroscedastic additive noise model yij = fi (xij)+vijeij
for all j = 1, ...,mi, The cause terms xij are drawn
from a mixture of ki Gaussians distributions. We con-
struct each Gaussian by sampling its mean from Gaussian(0,
ri) , its standard deviation from Gaussian(0, si) followed
by an absolute value, and its unnormalized mixture weight
from Gaussian (0, 1) followed by an absolute value. NCC
samples ki from RandomInteger[1,5] and ri ,si from Uni-
form[0,5]. NCC normalizes the mixture weights to sum to
one and xij

mi
j=1 to zero mean and unit variance. The noise

term vij and eij are also sampled from Gaussian distribu-
tion and mechanism fi is a cubic hermite spline which can
be referred to [6]. Finally NCC is trained with two em-
bedding layers and two classification layers followed by the
softmax in a ternary classification task (causal, anticausal
and no causation). Then while testing the model can be
used to evaluate on the RoI feature vectors directly. The
output NCC (x→ y) ranges from (0, 1) denotes the rela-
tive causality intensity from x inferring y.

However since the NCC model just can provide a qual-
itative prediction and may have huge deviation when ap-
plying on real-world feature which may affects the training
procedure of our VC R-CNN, in our experiment we just dis-
card few training samples with very strong collider causal
structure (i.e., X → Z ← Y ) by setting a threshold (we
set 0.001 in our experiment). Moreover, we use the object-
level RoI features extracted by the pretrained Faster R-CNN
to pre-calculate the NCC score, which may also lead to a
deviation since the pretrained RoI representations may not
fully present the objects. From the Table 7 in the main pa-
per we can also observe that NCC refining just brings a little
difference to the downstream task performance. The poten-
tial reason is that our VC R-CNN can automatically learn
the reasonable confounder attention during the large dataset
training. We will continue exploring the usage of NCC and
other causal discovery method in our future work.



Model Feature Cross-Entropy Loss CIDEr Optimization

B@1 B@4 M R S C B@1 B@4 M R S C

U
p-

D
ow

n Obj 74.5 33.2 25.9 54.7 18.9 104.7 77.1 32.6 25.2 55.2 18.3 110.6
Obj+Det 75.4 34.4 26 55.8 19.9 108.9 77.9 33.9 25.4 56.1 19.8 114.7
Obj+Cor 75.6 34.5 26.1 55.2 19.6 108.7 78.0 34.1 25.6 56.0 19.9 115.2
Obj+VC 76.3 35.3 26.3 56.3 20.2 111.6 79.1 35.7 25.9 57.0 20.5 119.7

A
oA

N
et Obj 74.6 34.1 25.9 55.4 19.7 108.1 78.1 35.4 25.6 56.7 20.7 118.4

Obj+Det 75.1 33.9 26.1 55.7 19.8 109.7 78.3 36.2 27.1 56.9 20.9 120.2
Obj+Cor 75.5 34.3 26.2 55.9 20.1 110.8 78.7 36.8 27.5 57.2 21.1 121.1
Obj+VC 76.0 35.0 26.4 56.1 20.5 112.2 79.1 37.2 29.0 57.6 21.5 123.5

Table 2. The image captioning performances of two models with ablative features (based on vanilla Faster R-CNN feature) on Karpathy
split.

C. Network Architecture
Here we introduce the detailed network architectures of

all the components of our VC R-CNN in Table 1. Given
an image and the feature extraction backbone, any two
RoI feature vectors x and y were extracted as in Table 1
(1)(2). Then as the Section 3.2 The Proposed Implementa-
tion, we adopted the Scale Dot-Product Attention to refine
confounders from the confounder dictionary Z as in Table 1
(3). A linear addition model fy(x, z) was proposed to com-
bine the effect on Y from both X and confounder Z. Finally
we made the do calculus by Self Predictor and Context Pre-
dictor in Table 1 (6)(7).

D. More Quantitative Results
In the experiment of our main paper, we adopted the

bottom-up feature [1] as our base feature. The bottom-
up feature pretrained Faster R-CNN on ImageNet [3] and
Visual Genome [5] to propose salient object level features
with attribute rather than the uniform gird of equally-sized
image regions, enable attention to be calculated at the level
of semantically meaningful regions and bring a huge im-
provement in image-and-language tasks.

Here we also concatenated our VC feature onto the
vanilla image region representations based on pretrained
Faster R-CNN model with ResNet-101 on MS-COCO
dataset. Note that for better comparison we utilized the
bounding box coordinates of the bottom-up feature to con-
trol the number and location of the boxes and then ap-
plied new feature in the Image Captioning task. Results
are shown in Table 2. We can also observe that concate-
nating with our VC feature can lead to a huge performance
improvement, which demonstrates the stability of our VC
feature and effectiveness of the proposed intervention.

E. More Qualitative Results
E.1. Failure Case

Failure in VC R-CNN. As shown in Figure 5, we can see
that sometimes our VC R-CNN cannot make quite reason-
able refinement for confounder dictionary via the Scaled

Confounder Z: Giraffe   0.475
Microwave   0.325 
Toaster   0.031

X: Dog  Y: Vase X: Chair  Y: Fork

Confounder Z: Skateboard   0.384
Hair Drier   0.297   
Baseball Bat  0.189

Figure 5. The examples of the failure case about confounder find-
ing in VC R-CNN.

Dot-Product Attention while predicting Y given X and Z,
especially when there is no obvious relation between X and
Y . For example while making the intervention between
dog and vase, chair and fork, the model attends to the
giraffe and skateboard respectively. To tackle this
limitation, the better schedule of confounder exploring, for
example choosing approapiate context objects as the con-
founder dictionary, will be tried in our future work.

Failure in Downstream Tasks. Though we designed the
intervention (do-expression) in unsupervised representation
learning to prevent the cognition error and help machine
learn the common sense, some attention errors still exist in
downstream tasks. Here we present two examples in Fig-
ure 6. We can observe that in the VQA example (left), the
model provides a reasonable but incorrect answer, while in
image captioning the generated description does not cover
every instance. The possible reason lies in two folds. First,
the current detection technique is still limited, for exam-
ple the Faster R-CNN cannot recognize the kangaroo on
the stop sign. Second, we know that our VC R-CNN can
find the probable and reasonable confounders from the con-
founder dictionary according to the given image. How-
ever, it may still fail to exploit the exact confounder (e.g.,
motorcycle in VQA and lamp, chair in Image Cap-
tioning) to fully eliminate the correlation bias.



Q: What may cross the road?
GT: Kangaroo
Ours: Motorcycle

Motorcycle:0.32

GT: A living room with 
lamps, a couch and a chair.
Ours: A living room with a 
couch and a table.

Figure 6. The examples of the failure case in downstream tasks.

E.2. Image Captioning

Figure 7 & 8 exhibit visualizations of utilizing our VC
feature (right) compared with using Faster R-CNN feature
(i.e., bottom-up feature, left) with the classical Up-Down
model in image captioning task. The boxes represent the at-
tended regions when generating words with the same color.
From the illustration we can observe that with our VC fea-
ture, model can generate more fruitful descriptions with
more accurate attention. For example, in Figure 8 bot-
tom with our VC feature, model focuses on birds and gives
the accurate and fruitful descriptions: “two birds perched”
rather than “a bird sitting” generated by the baseline model.
Furthermore, we can also see that our VC feature can help
to overcome the language bias efficiently. Other than giv-
ing the common collections, the model can generate rea-
sonable captions according to the image content. For exam-
ple in the middle of Figure 8, “cat” appearing with “bed”
(“cat+bed”/“cat”=6.7%) is quite more often than “cat” with
“blanket” (“cat+blanket”/“cat”=1.4%) in the training text,
leading to a “hallucination” to generate “bed” without see-
ing the bed.

E.3. VQA

We presented the comparison of Faster R-CNN feature
(left) and our VC feature (right) in VQA in Figure 9 & 10
based on the Up-Down model. We can see that in VQA task
the most serious problem is the incorrect attention even with
the correct answer, which means the model actually NOT
understand the question and make inference combining the
vision and language. As we described in Introduction of the
main paper, the dataset co-occurring bias may lead to the in-
correct attention. For example in the middle of Figure 9 the
model attend to the horse rather than human since horse and
person co-occur too many times. Thanks to our VC feature,
the attention becomes better and more accurate with allevi-
ating the correlation bias by our proposed intervention.
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A vase of flowers sitting 
on top of a table.

A white vase filled with 
purple flowers on top of 
a table.

Vase

Flower

A dog holding a frisbee 
in his mouth.

A dog is running with a 
frisbee in his mouth.

Dog

A couple of dog lying on 
the beach.

A dog lying on the 
beach next to the water.

Dog
Water

A woman sitting at a 
table with a table.

A woman sitting at a 
table in a restaurant.

Wall

Figure 7. Qualitative visualizations in Image Captioning with utilizing Faster R-CNN feature (left) and our VC feature (right). Boxes in
image represent the attention region when generating words with the same color.



A black and white cat 
sitting on a bed.

A black and white cat 
laying on a green blanket.

Blanket

A plane is flying in the 
sky.

An airplane is flying in 
the sky over a tree.

Tree

A bird sitting on top of a 
tree.

Two birds perched on 
top of a tree.

Birds

A girl standing next to a 
sheep.

A women petting a sheep in a 
field.

Sheep

Figure 8. Qualitative visualizations in Image Captioning with utilizing Faster R-CNN feature (left) and our VC feature (right). Boxes in
image represent the attention region when generating words with the same color.



Q: Is the man wearing a scarf?
A: Yes

Q: Is the man wearing a scarf?
A: Yes

Scarf

Jacket

Q: How many wheels does the 
vehicle behind the man have?
A: 2

Q: How many wheels does the 
vehicle behind the man have?
A: 2

foot

wheel

Q: Is the rider a child or an adult?
A: Adult

Person

Horse

Q: Is the rider a child or an adult?
A: Adult

Q: Are the birds legs touching the 
water?
A: Yes

Q: Are the birds legs touching the 
water?
A: No

Leg

Water

Figure 9. The qualitative results of Visual Question Answering by using the Faster R-CNN feature (left) and concatenated with our VC
feature (right). Boxes denote the attended region when answering.



Q: Is this woman legs stuck?
A: No

Leg

Head

Q: Is there a camera?
A: Yes.

Q: Is there a camera?
A: Yes

Person

Camera

Q: Is this woman legs stuck?
A: No

Q: What is in the sink?
A: nothing

Q: What is in the sink?
A: nothing

Sink
Pot

Figure 10. The qualitative results of Visual Question Answering by using the Faster R-CNN feature (left) and concatenated with our VC
feature (right). Boxes denote the attended region when answering.


