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Figure 1: Weight Estimations on Subsets of Data. We used a small subset
of Kinetics dataset to estimate the weights. The weights are quite robust as
we decrease the volume of dataset. This suggests feasibility to use subsets
to reduce the costs for Gradient-Blending.

1. Estimating Weights on Subsets of Data

We show that weight estimations by Gradient-Blending is
robust on small subsets of data. We sampled 25%, 50% and
75% of Kinetics dataset and use these subsets as train sets
in Alg. 2 in main paper. As shown in Fig. [T} the estimated
weights are stable on small subsets of data. This suggests
that the computational cost of the algorithm can be reduced
by using a small subset of data for weight estimation.

2. Understanding OGR

Overfitting is typically understood as learning patterns
in a training set that do not generalize to the target dis-
tribution. We quantify this as follows. Given model pa-
rameters ©Y) where N indicates the training epoch, let
LT (W) be the model’s average loss over the fixed train-
ing set, and £*(©V)) be the “true” loss w.r.t the hypotheti-
cal target distribution. (In practice, £* is approximated by
the test and validation losses.) For either loss, the quantity
L£(0©) — £(©™)) is a measure of the information gained
during training. We define overfitting as the gap between the
gain on the training set and the target distribution:

On = (57(9@) - cT(@W))) - (E*(G)(O)) - c*(e(N)))

and generalization to be the amount we learn (from training)
about the target distribution:

Gy = L£5(00) — £x(eW)

The overfitting-to-generalization ratio is a measure of infor-
mation quality for the training process of /N epochs:

(£7(©)—LT(©M)))—(£*(©)—L*(0"))

OGR = L (@) —L*(6(M) Y]

We can also define the amount of overfitting and gener-
alization for an intermediate step from epoch N to epoch
N + n, where

AON = (ONgn — OnN)
and
AGN.» = (GNiyn — GN)
Together, this gives OG R between any two checkpoints:

AON,TL
AGn,

OGR = ( )

However, it does not make sense to optimize this as-is.
Very underfit models, for example, may still score quite well
(difference of train loss and validation loss is very small for
underfitting models). What does make sense, however, is to
solve an infinitesimal problem: given several estimates of
the gradient, blend them to minimize an infinitesimal OGR
(or equivalently OG R?). We can then apply this blend to our
optimization process by stochastic gradients (eg. SGD with
momentum). In a multi-modal setting, this means we can
combine gradient estimates from multiple modalities and
minimize OGR to ensure each gradient step now produces
a gain no worse than that of the single best modality.

Consider this in an infinitesimal setting (or a single pa-
rameter update step). Given parameter O, the full-batch
gradient with respect to the training set is VL7 (©), and the



groundtruth gradient is V.L*(©). We decompose VL into
the true gradient and a remainder:
VLT (©) =VL(O) +e 2)

In particular, e = VL7 (0) — VL*(0) is exactly the in-
finitesimal overfitting. Given an estimate ¢ with learning
rate 7, we can measure its contribution to the losses via
Taylor’s theorem:

LT (0 +ng) ~ LT(©) + (VLT §)

L7(© +ng) =~ LY(O) +n(VL, g)

which implies §’s contribution to overfitting is given by

(VLT —VL*,§). If we train for N steps with gradients

{g:}&Y, and n; is the learning rate at i-th step, the final OGR
can be aggregated as:

Yo m(VLT(0W) — VL (©01D), gi)

i m{VLH(O0), gi)

and OGR? for a single vector §; is

OGR = 3)

VLT (O0) - V/:*(@(”),Qi>>2 @

(VL (01), g;)
Next we will compute the optimal blend to minimize single-
step OGR?.

OGR? = (<

3. Proof of Proposition 1

Proof of Proposition 1. Without loss of generality, we solve
the problem with a different normalization:

(VLD wpvg) =1 (5)
k

(Note that one can pass between normalizations simply by
uniformly rescaling the weights.) With this constraint, the
problem simplifies to:

w* = argmin E[((VLT — VL, Z wivr)?] (6)
w k

We first compute the expectation:

E[(VLT = VLY wievr))?)
k

= E[(Z Wi <V£T - Vﬂ*, ’Uk>)2]
k
=ED_ wew; (VLT = VL 0 (VLT — VL, v;)]

k.j
= wpw; E (VLT — VL o )(VLT = VL ;)]
k.j

=> wio} (7)
k

where 07 = E[(VLT — V.L*, v;)?] and the cross terms
vanish by assumption.

We apply Lagrange multipliers on our objective function
and constraint (3)):

L= szai - A (Z wi (VL v — 1> 8)
k k

The partials with respect to wy, are given by

oL

Jw = 2upor — MVL* vg) 9)
Setting the partials to zero, we obtain the weights:

o <V£*,vk>
wy, = /\72013 (10

The only remaining task is obtaining the normalizing con-
stant. Applying the constraint gives:

V£*, 2
1:Zwk<V£*,vk>:)\Z% (11)
k k k

In other words,

2
A= w07 12)
S <V£U%Uk)2
Setting Z = 1/ we obtain w} = %% Dividing
k
by the sum of the weights yields the original normalization.
O

Note: if we relax the assumption that E[(VLT —
VL v (VLT —VL* v;)] = 0 for k # j, the proof pro-
ceeds similarly, although from (7)) it becomes more conve-
nient to proceed in matrix notation. Define a matrix X with
entries given by

Ekj = EKVL:T — VE*, 1}]9><V£T - V‘C*a Uj>]

Then one finds that
* 1 —1 *
Wy = EZZM <V£ 7’Uk>
J

1 —1 * 2
7 = 5;2’“ (VL* vg)
sJ

4. Variances of G-Blend Runs

The variances of the performances on the datasets used
by the paper are typically small, and previous works provide
results on a single run. To verify that G-Blend results are re-
producible, we conducted multiple runs for G-Blend results
in Table 3 of the main paper. We found that the variance
is consistent across different modalities for G-Blend results
(Table[T).



RGB + A RGB + OF OF + A RGB + OF + A
Clip V@l V@5 Clip V@l V@5 Clip V@l V@5 Clip V@l V@5
65.940.1 | 747402 | 91.5+0.1 | 64.3+0.1 | 73.1+£0.0 | 90.840.1 | 54.440.6 | 66.3+0.5 | 86.0+0.6 | 66.1+0.4 | 749402 | 91.840.2

Table 1: Last row of Table 3 in main papers with variance. Results are averaged over three runs with random initialization, and + indicates variances.

5. Sub-sampling and Balancing Multi-label
Dataset

For a single-label dataset, one can subsample and balance
at a per-class level such that each class may have the same
volume of data. Unlike single-label dataset, classes in multi-
label dataset can be correlated. As a result, sampling a single
data may add volume for more than one class. This makes
the naive per-class subsampling approach difficult.

To uniformly sub-sample and balance AudioSet to get
mini-AudioSet, we propose the following algorithm:

Algorithm 1: Sub-sampling and Balancing Multi-label
Dataset
Data: Original Multi-Class Dataset D, Minimum Class
Threshold M, Target Class Volume N
Result: Balanced Sub-sampled Multi-label Dataset D’
Initialize empty dataset D’ ;
Remove labels from D such that label volume is less
than M;
Randomly shuffle entries in D;

for Data Entry d € D do
Choose class c of d such that the volume of c is the

smallest in D’ ;
Let the volume of cbe V. in D ;
Let the volume of cbe V. in D’ ;
Generate random number r to be an integer
between O and V. — V. ;
ifr < N — V. then
‘ Selectdto D’ ;
else
| Skip d and continue ;
end

end

6. Details on Model Architectures
6.1. Late Fusion By Concatenation

In late fusion by concatenation strategy, we concatenate
the output features from each individual network (i.e. k
modalities’ 1-D vectors with n dimensions). If needed, we
add dropout after the feature concatenations.

The fusion network is composed of two F'C layers, with
each followed by an ReLU layer, and a linear classifier. The
first FC maps kn dimensions to n dimensions, and the sec-

ond one maps n to n. The classifier maps n to ¢, where c is
the number of classes.

As sanity check, we experimented using less or more F'C'
layers on Kinetics:

e (0 FC. We only add a classifier that maps kn dimensions
to ¢ dimensions.

e 1 FC. We add one FC layer that maps kn dimensions to
n dimension, followed by an ReLU layer and classifier
to map n dimension to ¢ dimensions.

e 4 FC. We add one FC layer that maps kn dimensions
to n dimension, followed by an ReLU layer. Then
we add 3 FC-ReLU pairs that preserve the dimensions.
Then we add an a classifier to map n dimension to ¢
dimensions.

We noticed that the results of all these approaches are sub-
optimal. We speculate that less layers may fail to fully learn
the relations of the features, while deeper fusion network
overfits more.

6.2. Mid Fusion By concatenation

Inspired by [2], we also concatenate the features from
each stream at an early stage rather than late fusion. The
problem with mid fusion is that features from individual
streams can have different dimensions. For example, audio
features are 2-D (time-frequency) while visual features are
3-D (time-height-width).

We propose three ways to match the dimension, depend-
ing on the output dimension of the concatenated features:

e 1-D Concat. We downsample the audio features to
1-D by average pooling on the frequency dimension.
We downsample the visual features to 1-D by average
pooling over the two spatial dimensions.

e 2-D Concat. We keep the audio features the same and
match the visual features to audio features. We down-
sample the visual features to 1-D by average pooling
over the two spatial dimensions. Then we tile the 1-D
visual features on frequency dimension to make 2-D
visual features.

e 3-D Concat. We keep the visual features fixed and
match the audio features to visual features. We down-
sample the audio features to 1-D by average pooling
over the frequency dimension. Then we tile the 1-D
visual features on two spatial dimensions to make 3-D
features.



The temporal dimension may also be mismatched be-
tween the streams: audio stream is usually longer than visual
streams. We add convolution layers with stride of 2 to down-
sample audio stream if we are performing 2-D concat. Oth-
erwise, we upsample visual stream by replicating features
on the temporal dimension.

There are five blocks in the backbones of our ablation
experiments (section 4), and we fuse the features using all
three strategies after block 2, block 3, and block 4. Due
to memory issue, fusion using 3-D concat after block 2 is
unfeasible. On Kinetics, we found 3-D concat after block 3
works the best, and it’s reported in Fig. 1 in the main paper.
In addition, we found 2-D concat works the best on AudioSet
and uses less GFLOPs than 3-D concat. We speculate that
the method for dimension matching is task-dependent.

6.3. SE Gate

Squeeze-and-Excitement network introduced in [1]] ap-
plies a self-gating mechanism to produce a collection of
per-channel weights. Similar strategies can be applied in
a multi-modal network to take inputs from one stream and
produce channel weights for the other stream.

Specifically, we perform global average pooling on one
stream and use the same architectures in [1] to produce a set
of weights for the other channel. Then we scale the channels
of the other stream using the weights learned. We either do
a ResNet-style skip connection to add the new features or
directly replace the features with the scaled features. The
gate can be applied from one direction to another, or on both
directions. The gate can also be added at different levels for
multiple times. We found that on Kinetics, it works the best
when applied after block 3 and on both directions.

We note that we can also first concatenate the features
and use features from both streams to learn the per-channel
weights. The results are similar to learning the weights with
a single stream.

6.4. NL Gate

Although lightweight, SE-gate fails to offer any spatial-
temporal or frequency-temporal level attention. One alterna-
tive way is to apply an attention-based gate. We are inspired
by the Query-Key-Value formulation of gates in [3]. For
example, if we are gating from audio stream to visual stream,
then visual stream is Query and audio stream is Key and
Value. The output has the same spatial-temporal dimension
as Query.

Specifically, we use Non-Local gate in [4] as the imple-
mentation for Query-Key-Value attention mechanism. De-
tails of the design are illustrated in fig. 2] Similar to SE-gate,
NL-Gate can be added with multiple directions and at multi-
ple positions. We found that it works the best when added
after block 4, with a 2-D concat of audio and RGB features
as Key-Value and visual features as Query to gate the visual
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Figure 2: NL-Gate Implementation. Figure of the imple-
mentation of NL-Gate on visual stream. Visual features are
the Query. The 2D Mid-Concatenation of visual and audio
features is the Key and Value.

stream.

7. Additional Ablation Results
7.1. A strong oracle baseline

In section 3.3, we presented the results on Gradient-
Blending as an effective regularizer to train multi-modal
networks. Here, we consider an additional strong baseline
for the Kinetics, audio-RGB case.

Suppose we have an oracle to choose the best modality
(from audio, RGB and naive A/V) for each class. For ex-
ample, for “whistling" video, the oracle chooses naive A/V
model as it performs the best among the three on “whistling"
in validation set. With this oracle, Top-1 video accuracy is
74.1%, or 0.6% lower than the offline G-Blend result.

7.2. Training Accuracy

In section 3.2, we introduced the overfitting problem of
joint training of multi-modal networks. Here we include both
validation accuracy and train accuracy of the multi-modal
problems (Table[2). We demonstrate that in all cases, the
multi-modal networks are performing worse than their single
best counterparts, while almost all of their train accuracy
are higher (with the sole exception of OF+A, whose train
accuracy is similar to audio network’s train accuracy).

7.3. Early Stopping

In early stopping, we experimented with three different
stopping schedules: using 25%, 50% and 75% of iterations
per epoch. We found that although overfitting becomes less



Dataset Modality Validation V@1 | Train V@1
A 19.7 85.9
RGB 72.6 90.0
OF 62.1 75.1
Kinetics A +RGB 71.4 95.6
RGB + OF 71.3 91.9
A + OF 58.3 83.2
A +RGB + OF 70.0 96.5
mini A 22.1 56.1
RGB 62.7 77.6
Sport
A +RGB 60.2 84.2

Table 2: Multi-modal networks have lower validation ac-
curacy but higher train accuracy. Table of Top-1 accuracy
of single stream models and naive late fusion models. Single
stream modalities include RGB, Optical Flow (OF), and Au-
dio Signal (A). Its higher train accuracy and lower validation
accuracy signal severe overfitting.

of a problem, the model tends to under-fit. In practice, we
still found that the 75% iterations scheduling works the best
among the three, though it’s performance is worse than full
training schedule that suffers from overfitting. We summa-
rize their learning curves in fig.[3]
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Figure 3: Early stopping avoids overfitting but tends to
under-fit. Learning curves for three early stopping sched-
ules we experiment. When we train the model with less
number of iterations, the model does not overfit, but the
undesirable performance indicates an under-fitting problem
instead.

7.4. Additional Qualitative Analysis

In section 3.3 we presented the qualitative analysis of
G-Blend’s performance compared with RGB model perfor-
mance (fig.6). We expand the analysis and provide more
details in this section.

We first expand the analysis to compare the top-20 and
bottom-20 improved classes of G-Blend versus RGB model
(fig.[). This is a direct extension of fig.6. It further confirms

that classes that dropped are indeed not very semantically
relevant in audio, and in many of those classes, the audio
model’s performance is almost 0.

We further extends the analysis to compare naively trained
audio-visual model with RGB-only model (fig.[5). We note
that the improvement for top-20 classes is smaller than that
of G-B and for bot-20 classes the drop is mroe significant.
Moreover, we note that in some bot-20 classes like snorkel-
ing or feeding bird, where the sound of breathing and birds
is indeed relevant, naively trained A/V model is not perform-
ing well. For these classes, audio model achieves decent
performance. We further note that interestingly, for laugh-
ing, although naive A/V model outperforms RGB model, it
is worse than audio-only model. And only with G-Blend,
it benefits from both visual and audio signals, performing
better than both.

Finally, we compare the top-20 and bot-20 classes where
G-Blend has the most improvement/ drop with naively
trained A/V model. We note that the gains in improved
classes are much larger than the decrease in dropped classes.
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Figure 4: Top-Bottom 20 classes based on improvement of G-Blend to RGB model. The improved classes are indeed audio-relevant, while those have
of G-B counterpart and the drop is more significant. More interesting, in some classes, the naively trained A/V model performs worse than audio signal.

performance drop are not very audio semantically-related.
Figure 5: Top-Bottom 20 classes based on improvement of naively trained aud

Figure 6: Top-Bottom 20 classes based on improvement of G-Blend to Naive aud

drop.
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