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Abstract

In this supplementary document, we provide further visu-

alizations and qualitative results of our learned depth map

fusion approach in comparison to multiple baselines. Fur-

thermore, we discuss the choice of different hyperparame-

ters.

1. Hyperparameters

Number of Samples S. First, we discuss our choice for the

number of samples S. With figure 1 and 2, we show that

sampling 9 values inside the local window centered around

the surface leads to the best reconstruction performance.

The number of samples S is closely related to the trunca-

tion distance in standard TSDF fusion [2]. Since the spac-

ing between samples in the window is fixed to the scene’s

resolution, the size of the local window is dependent on S.

Therefore, an increase in S leads to an increase of the local

window size. By increasing S and the window size, we feed

more information along the ray to the depth fusion network

and we can account for larger noise levels. However, if we

increase the number of samples beyond 9, the performance

decreases again, which is experimentally shown in figure

1 and 2. Having empirically evaluated the influence of S

on our depth map fusion pipeline, we decided to keep the

number of samples S = 9 constant across all experiments.

Outlier Post-filtering. In order to reduce the amount of

outliers in the scene, we have chosen to introduce outlier

post-filtering according to the accumulated update weights

during TSDF integration. Therefore, after every 100 frames

integrated, we re-initialize all voxels, where the accumu-

lated weights are smaller than 3.

2. Qualitative Results

In figures 3 and 4, we show more examples of recon-

structions of ShapeNet [1] objects using DeepSDF [4], Oc-

cupancyNetworks [3], standard TSDF fusion [2] and our

proposed method. We can clearly show that our method

is superior to all other approaches shown in reconstructing

these objects from noisy depth measurements.
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Intersection-over-Union w.r.t. different number of samples S

Figure 1. Intersection over Union on Modelnet [5] test data for

different numbers of samples S. When sampling 9 SDF values

inside the local window, our pipeline shows the best performance

in reconstructing models from noisy depth measurements.

In figures 5 and 6, we qualitatively compare our method

to standard TSDF fusion in reconstructing real-world scenes

from the 3D scene dataset [6]. Our method significantly re-

duces the noise artifacts in the result, mitigates the surface

thickening effect and generates very clean edges and cor-

ners.
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Accuracy w.r.t. different number of samples S

Figure 2. Accuracy on Modelnet [5] test data for different num-

bers of samples S. As it is the case for intersection-over-union,

the accuracy peaks at 9 samples inside the window.
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Figure 3. More qualitative results on ShapeNet test data They illustrate the significant performance difference in reconstructing fine

geometries and clean edges between our proposed method and standard TSDF as well as recent learning-based approaches.
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Figure 4. More qualitative results on ShapeNet test data They illustrate the significant performance difference in reconstructing fine

geometries and clean edges between our proposed method and standard TSDF as well as recent learning-based approaches
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Figure 5. More qualitative results of standard TSDF and our method on scene 3D data. They illustrate the significant performance

difference in reconstructing fine geometries and clean edges.
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Figure 6. More qualitative results of standard TSDF and our method on scene 3D data. They illustrate the significant performance

difference in reconstructing fine geometries and clean edges.
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