

Supplementary Materials

1. Dataset

the detailed characteristics of these datasets are shown in Table 1.

Table 1. Summary of datasets used in the experiments.

	# of training	# of test	# of class	size
<i>MNIST</i>	60,000	10,000	10	28×28
<i>CIFAR-10</i>	50,000	10,000	10	32×32
<i>CIFAR-100</i>	50,000	10,000	100	32×32
<i>Clothing1M</i>	1,000,000	10,000	14	224×224

2. Network Architecture

The network architectures of the MLP and CNN models are shown in Table 2.

Table 2. The models used on *MNIST*, *CIFAR-10* and *CIFAR-100*

MLP on <i>MNIST</i>	CNN on <i>CIFAR-10</i> & <i>CIFAR-100</i>
28×28 Gray Image	32×32 RGB Image
Dense $28 \times 28 \rightarrow 256$, ReLU	3×3 , 64 BN, ReLU 3×3 , 64 BN, ReLU 2×2 Max-pool 3×3 , 128 BN, ReLU 3×3 , 128 BN, ReLU 2×2 Max-pool 3×3 , 196 BN, ReLU 3×3 , 196 BN, ReLU 2×2 Max-pool
Dense $256 \rightarrow 10$	Dense $256 \rightarrow 100$

3. Parameter Sensitivity Analysis

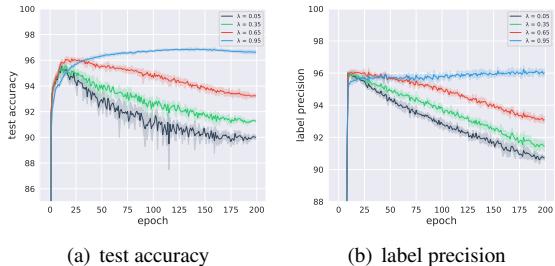


Figure 1. Results of JoCoR with different λ on *MNIST*

To conduct the sensitivity analysis on parameter λ , we set up the experiments above *MNIST* with symmetry-50% noise. Specifically, we compare λ in the range of [0.05, 0.35, 0.65, 0.95]. The larger the λ is, the less the divergence of two classifiers in JoCoR would be.

The test accuracy and label precision vs. number of epochs are in Figure 1. Obviously, As the λ increases, the performance of our algorithm on test accuracy gets better and better. When $\lambda = 0.95$, JoCoR achieves the best performance. We can see the same trends on label precision, which means that JoCoR can select clean example more precisely with a larger λ .