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Abstract
It is well-known that for general convex optimization

problems, block-coordinate descent can get stuck in poor
local optima. Despite that, versions of this method known
as convergent message passing are very successful to ap-
proximately solve the dual LP relaxation of the MAP in-
ference problem in graphical models. In attempt to identify
the reason why these methods often achieve good local min-
ima, we argue that if in block-coordinate descent the set of
minimizers over a variable block has multiple elements, one
should choose an element from the relative interior of this
set. We show that this rule is not worse than any other rule
for choosing block-minimizers. Based on this observation,
we develop a theoretical framework for block-coordinate
descent applied to general convex problems. We illustrate
this theory on convergent message-passing methods.

1. Introduction

Block-coordinate descent (BCD) is an iterative optimiza-
tion method which in every iteration finds a global optimum
of the problem over a subset of variables, keeping the re-
maining variables fixed. For some problems, fixed points of
BCD and cluster points of the sequence generated by it are
global optima, see [22] and the references therein. Focusing
on convex problems, BCD can be made very efficient and
scalable provided that optimality can be guaranteed, as in
[14, 6, 2]. For general convex problems, BCD fixed/cluster
points can be arbitrarily poor local minima (where ‘local’ is
meant with respect to block-coordinate moves). Thus, BCD
is mostly regarded unsuitable for general convex problems.

An exception is the class of methods known as con-
vergent message passing, used to approximately solve the
linear-programming (LP) relaxation of the MAP inference
problem in graphical models [20, 8] (frequently used to
model low-level computer vision tasks such as denois-
ing, segmentation or registration) and some other com-
binatorial problems [19]. These methods apply various
forms of BCD to various forms of the dual LP relaxation,

where the latter boils down to the unconstrained minimiza-
tion of a piecewise-affine (hence non-differentiable) convex
function. Examples are max-sum diffusion [12, 18, 25],
TRW-S [9], MPLP [3], SRMP [10], and [4, 13]. For many
problems from computer vision, TRW-S is faster than the
competing methods (including primal-dual methods such as
ADMM or [1]) and its fixed points are not far from global
minima, especially for large sparse instances [20, 8]. This
motivates us to study convergent message-passing methods
independently of MAP inference, with the hope of extend-
ing them to a wider class of convex problems.

One might think that convergent message-passing meth-
ods are ‘just’ applications of BCD to suitable forms of the
dual LP relaxation. However, this is not the whole expla-
nation: we believe these methods have a single feature that
allows them to achieve good local optima. In a BCD itera-
tion, the minimizer over a variable block need not be unique
and therefore a single minimizer must be chosen. We argue
that this minimizer should be chosen from the relative inte-
rior of the set of all minimizers over the variable block. We
call this the relative interior rule.

Based on this observation, we develop a theoretical
framework for BCD applied to general convex problems.
We distinguish three types of block-coordinate local min-
ima: (ordinary) local minima, interior local minima, and
pre-interior local minima. We show that the relative interior
rule is not worse than any other rule to choose variable-
block minimizers, in the following sense: starting from any
non-pre-interior local minimum, BCD satisfying the rela-
tive interior rule inevitably improves the objective; starting
from any pre-interior local minimum, BCD (not necessar-
ily satisfying the relative interior rule) never improves the
objective. Assuming a linear objective function, we show
that local and interior local minima form sets of faces of
the feasible set, which are closed under intersection. In-
spired by the proof in [18] (revisited in [17, §8]), we prove
convergence of BCD satisfying the relative interior rule to
the set of pre-interior local minima. We show how well-
known convergent message-passing methods fit in our the-
ory. Here, local minimality conditions induced by the rela-
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tive interior rule correspond to local consistencies, such as
arc consistency [25] or weak-tree agreement [9]. We also
sketch applications to some new problems.

2. Summary of Main Results
Suppose we want to minimize a convex function f : V → R
on a closed convex set X ⊆ V , where V is a finite-
dimensional vector space over R. For that, we con-
sider the following coordinate-free generalization of block-
coordinate descent. For brevity, for any Y ⊆ V we will use
Mf (Y ) to denote the set of all global minimizers of f on the
set Y . Let I be a finite set of subspaces of V , representing
permitted search directions. Having an estimate xn ∈ X of
the minimum, the next estimate xn+1 is chosen such that

xn+1 ∈Mf (X ∩ (xn + In)) (1)

for1 some In ∈ I. Clearly, f(xn+1) ≤ f(xn). A point
x ∈ X satisfying

x ∈Mf (X ∩ (x+ I)) ∀I ∈ I (2)

has the property that f cannot be improved by moving
from x within X along any single subspace from I. We
call such a point a local minimum of f on X with respect
to I. When I and/or (X, f) is clear from context, we will
speak only about a local minimum of f on X or just a local
minimum. Note, we use the term ‘local minimum’ in a dif-
ferent meaning than is usual in optimization and calculus.

Coordinate descent and block-coordinate descent are
special cases of this formulation. In the former, we have
V = Rd and I = {span{e1}, . . . , span{ed}} where ei de-
notes the ith standard basis vector of Rd. In the latter, we
have V = Rd and each element of I is the span of a subset
of the standard basis of Rd.

Recall [16, 5] that the relative interior of a convex set
X ⊆ V is the topological interior of X with respect to the
affine hull of X . We will denote it by riX . We propose
to modify condition (1) such that the minimum is always
chosen from the relative interior of the current optimal set.
Thus, condition (1) changes to

xn+1 ∈ riMf (X ∩ (xn + In)). (3)

A point xn+1 always exists because the relative interior of
every non-empty convex set is non-empty. We call a point
x ∈ X that satisfies

x ∈ riMf (X ∩ (x+ I)) ∀I ∈ I (4)

an interior local minimum of f on X with respect to I.
Clearly, every interior local minimum is a local minimum.

In our analysis, another type of local minimum will ap-
pear: pre-interior local minimum. It will be defined later,

1For x ∈ V and I ⊆ V , we denote x+ I = {x+ y | y ∈ I }.

now we just say that it is only a finite number of itera-
tions (3) away from an interior local minimum.

Consider a sequence (xn)∞n=0 satisfying (1) resp. (3). To
ensure that each search direction is always visited again
after a finite number of iterations, we assume that the se-
quence (In)∞n=0 contains each element of I an infinite num-
ber of times. For brevity, we will often write only (xn) and
(In) instead of (xn)∞n=0 and (In)∞n=0. The following facts,
proved in the sequel, show that methods satisfying (3) are
not worse, in a precise sense, than methods satisfying (1):

• For every sequence (xn) satisfying (3), if x0 is an in-
terior local minimum then xn is an interior local mini-
mum for all n (see Theorem 11).

• For every sequence (xn) satisfying (3), if x0 is a pre-
interior local minimum then xn is an interior local min-
imum for some n (see Corollary 14).

• For every sequence (xn) satisfying (1), if x0 is a pre-
interior local minimum then f(xn) = f(x0) for all n
(see Theorem 13).

• For every sequence (xn) satisfying (3), if x0 is not a
pre-interior local minimum then f(xn) < f(x0) for
some n (see Theorem 12).

As an illustrative example, consider coordinate descent
applied to a simple linear program. Let V = R2, X =
conv{(1, 0), (3, 0), (3, 1), (0, 4)}, f(x) = 〈−e1, x〉 (i.e.,
f is constant vertically and decreases to the right), and
I = {span{e1}, span{e2}}. See the picture:

(0, 4)

(1, 0) (3, 0)

x0 + I1

x0 x1 x0 + I0

x2 x3

x4 (3, 1) = x5

x7

x6

The set of global minima is the line segment [(3, 0), (3, 1)],
the set of local minima is [(3, 0), (3, 1)]∪ [(0, 4), (3, 1)], the
set of interior local minima is {(0, 4)} ∪ ri[(3, 0), (3, 1)],
and the set of pre-interior local minima is {(0, 4)} ∪
[(3, 0), (3, 1)]. The thick polyline depicts the first few points
of a sequence (xn) satisfying (3), assuming that the se-
quence (In) alternates between the two subspaces from I.
When starting from any point x0 ∈ X \ {(0, 4)}, every
sequence (xn) satisfying (3) leaves any non-interior local
minimum after a finite number of iterations, while improv-
ing the objective function. Intuitively, this is because when
the objective cannot be decreased by moving along any sin-
gle subspace from I, condition (3) at least enforces the
point to move to a face of X of a higher dimension (if
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one exists), providing thus ‘more room’ to hopefully de-
crease the objective in future iterations. In contrast, con-
dition (1) allows a sequence (xn) to stay in any (possibly
non-interior) local minimum forever. When starting from
x0 = (0, 4), every sequence satisfying (1) will stay in x0

forever. This confirms the well-known fact that for some
non-smooth convex problems, coordinate descent can get
stuck in a point that is not a global minimum.

We prove in §5 that after fixing the choices of minimizers
in (3), under natural assumptions the sequence (xn) satisfy-
ing (3) converges to the set of pre-interior local minima.

It is well-known that every convex optimization prob-
lem can be stated in the epigraph form, which has a linear
objective: instead of minimizing f(x) over x ∈ X , we min-
imize t over (x, t) ∈ X × R subject to f(x) ≤ t. It should
not be surprising that the notions of (interior) local minima
and the updates (1) and (3) remain ‘the same’ if we pass
between the two formulations. Therefore, in §3, §4 and §5
we will assume that f is linear. We give more details on the
case of non-linear convex function in §6.

3. Structure of the Set of Local Minima
It is well-known that the setMf (X) of global minima of

a linear function f on a closed convex setX is an (exposed)
face of X . We show that local resp. interior local minima
also cluster to faces of X . Moreover, similarly as the set of
all faces, we show that the set of faces containing local resp.
interior local minima are closed under intersections.

For x, y ∈ V , we denote

[x, y] = conv{x, y} = { (1− α)x+ y | 0 ≤ α ≤ 1 }. (5)

We have

ri[x, y] = { (1− α)x+ y | 0 < α < 1 }. (6)

If x 6= y, then [x, y] is a line segment and ri[x, y] = [x, y] \
{x, y}. If x = y, then [x, y] = ri[x, y] = {x}.

Let us recall basic facts about faces of a convex set [16,
5]. A face of a convex set X ⊆ V is a convex set F ⊆ X
such that every line segment from X whose relative interior
intersects F lies in F , i.e.,

x, y ∈ X, F ∩ ri[x, y] 6= ∅ =⇒ x, y ∈ F. (7)

The set of all faces of a closed convex set partially or-
dered by inclusion is a complete lattice, in particular it is
closed under (possibly uncountable) intersections. For a
point x ∈ X , let F (X,x) denote the intersection of all
faces (equivalently, the smallest face) of X containing x.
For every x, y ∈ X ,

y ∈ F (X,x) ⇐⇒ F (X, y) ⊆ F (X,x), (8a)
y ∈ riF (X,x) ⇐⇒ F (X, y) = F (X,x), (8b)
y ∈ rbF (X,x) ⇐⇒ F (X, y) ( F (X,x), (8c)

where rbX = X \ riX denotes the relative boundary of a
convex set X . Equivalence (8b) shows that F (X,x) is in
fact the unique face of X having x in its relative interior.
Note that (8c) follows from (8a) and (8b).

Lemma 1. Let X ⊆ V be a convex set. We have x ∈ riX
iff for every y ∈ X there exists u ∈ X such that x ∈ ri[y, u].

Proof. The ‘only-if’ direction is immediate from the defini-
tion of relative interior. For the ‘if’ direction see, e.g., [16,
Theorem 6.4].

Lemma 2. Let X,Y ⊆ V be closed convex sets such that
Y ⊆ X . Let x ∈ riY . Then

y ∈ Y =⇒ y ∈ F (X,x), (9a)
y ∈ riY =⇒ y ∈ riF (X,x), (9b)
y ∈ rbY =⇒ y ∈ rbF (X,x). (9c)

Proof. For (9a), let x ∈ riY and y ∈ Y . Thus, by Lemma 1
there is u ∈ Y such that x ∈ ri[u, y]. Since x ∈ F (X,x)
and y, u ∈ X , the definition of face yields y ∈ F (X,x).
Implications (9b) and (9c) follow from (9a) and (8).

Lemma 3. Let y, z, u ∈ V and x ∈ ri[u, y]. Then we have
ri[u, z] ∩ ri[x, x+ z − y] 6= ∅.

Proof. Since x ∈ ri[u, y], there is 0 < α < 1 such that
x = (1 − α)u + αy (note that if y 6= u then α is unique).
Let v = (1− α)u+ αz, hence v ∈ ri[u, z]. Subtracting the
two equations yields v = (1− α)x+ α(x+ z − y), hence
v ∈ ri[x, x+ z − y].

The picture illustrates Lemma 3 for the points in a gen-
eral position (i.e., y, z, u not collinear):

y x u

z

v

x+ z − y

In the theorems in the rest of this section, the letter ‘I’
will always denote a subspace of V .

Theorem 4. Let x ∈ Mf (X ∩ (x + I)) and y ∈ F (X,x).
Then y ∈Mf (X ∩ (y + I)).

Proof. Let z ∈ X ∩ (y + I). We need to prove that f(y) ≤
f(z). Since y ∈ F (X,x), by Lemma 1 there is u ∈ X such
that x ∈ ri[u, y]. By Lemma 3, there is a point

v ∈ ri[u, z] ∩ ri[x, x+ z − y].

Since z, u ∈ X , by convexity of X we have v ∈ X . Since
z−y ∈ I , we have v ∈ x+ I . Since x ∈Mf (X ∩ (x+ I)),
we thus have f(x) ≤ f(v), hence f(x) ≤ f(x + z − y).
Since [x, x + z − y] = [y, z] + x − y, by linearity of f we
have f(y) ≤ f(z).
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Corollary 5. If x is a local minimum, then every point of
F (X,x) is a local minimum.

Let us emphasize that if x and y are local minima and
y ∈ F (X,x), then we can have f(y) 6= f(x).

Lemma 6. Let x ∈ riMf (X ∩ (x+ I)) and y ∈ F (X,x).
Then Mf (X ∩ (y + I)) ⊆ F (X,x).

Proof. Let z ∈ Mf (X ∩ (y + I)). By Theorem 4 we have
y ∈ Mf (X ∩ (y + I)), hence f(z) = f(y). Since y ∈
F (X,x), by Lemma 1 there is u ∈ X such that x ∈ ri[u, y].
By Lemma 3, there is a point

v ∈ ri[u, z] ∩ ri[x, x+ z − y].

Since z, u ∈ X and z − y ∈ I , we have v ∈ X ∩ (x + I).
Since [x, x + z − y] = [y, z] + x − y, by linearity of f we
have f(v) = f(x), hence v ∈Mf (X ∩ (x+ I)). Lemma 2
yields v ∈ F (X,x). Since z, u ∈ X , the definition of face
yields z ∈ F (X,x).

Lemma 7. Let x ∈ Mf (X ∩ (x + I)) ⊆ F (X,x). Then
x ∈ riMf (X ∩ (x+ I)).

Proof. Let u ∈ Mf (X ∩ (x + I)). Hence f(u) = f(x).
Moreover, by Lemma 1 there is v ∈ F (X,x) such that x ∈
ri[u, v]. Since u ∈ x + I , we have v ∈ x + I . By linearity
of f we have f(v) = f(x), thus v ∈Mf (X ∩ (x+ I)). By
Lemma 1, x ∈ riMf (X ∩ (x+ I)).

Theorem 8. Let Y ⊆ X . Let x ∈ riMf (X ∩ (x + I)) for
all x ∈ Y . Let y ∈ ri

⋂
x∈Y F (X,x). Then y ∈ riMf (X ∩

(y + I)).

Proof. Since G =
⋂
x∈Y F (X,x) is a face of X , we have

y ∈ riG iff G = F (X, y). By Theorem 4, we have y ∈
Mf (X ∩ (y + I)). By Lemma 6, Mf (X ∩ (y + I)) ⊆ G.
By Lemma 7, y ∈ riMf (X ∩ (y + I)).

Corollary 9. Let Y ⊆ X be a set of interior local minima.
Then every relative interior point of the face

⋂
x∈Y F (X,x)

is an interior local minimum.

Corollary 10. If x is an interior local minimum, then every
point of riF (X,x) is an interior local minimum.

The results of this section can be summarized as follows:
• Let us call a face of X a local minima face if all its

points are local minima. Since the set of faces of X is
closed under intersection, it follows from Corollary 5
that the set of all local minima faces of X (assuming
fixed f and I) is closed under intersections.

• Let us call a face of X an interior local minima face
if all its relative interior points are interior local min-
ima. Corollary 9 shows that the set of all interior local
minima faces of X is closed under intersections.

We finally define one more type of local minimum: a
point x is a pre-interior local minimum if x ∈ F (X, y) for
some interior local minimum y.

4. The Effect of Iterations
Here we prove properties of sequences (xn) satisfying

conditions (1) or (3) under various assumptions.

Theorem 11. Let (xn) be a sequence satisfying (3) such
that x0 is an interior local minimum. Then the following
hold for all n: f(xn) = f(x0), xn ∈ riF (X,x0), and
xn is an interior local minimum.

Proof. Suppose that for some n, xn is an interior local
minimum. Considering (3), by Lemma 2 we thus have
xn+1 ∈ riF (X,xn). By Corollary 9, xn+1 is an interior
local minimum. Since xn, xn+1 ∈ riMf (X ∩ (xn + In)),
we have f(xn+1) = f(xn).

Theorem 12. Let (xn) be a sequence satisfying (3) and
f(xn) = f(x0) for all n. Then the following hold: xn ∈
F (X,xn+1) for all n, xn is an interior local minimum for
some n, and x0 is a pre-interior local minimum.

Proof. Since f(xn+1) ≤ f(xn) = f(x0) for all n, we have
f(xn+1) = f(xn) for all n. Combining this with (3) yields
xn ∈Mf (X ∩ (xn + In)). Thus, for every n there are two
possibilities:
• If xn ∈ riMf (X ∩ (xn + In)) then, by Lemma 2, we

have xn ∈ riF (X,xn+1). By Theorem 8, we have
xn+1 ∈ riMf (X ∩ (xn+1 + I)) for all I ∈ I such that
xn ∈ riMf (X ∩ (xn + I)).

• If xn ∈ rbMf (X ∩ (xn + In)) then, by Lemma 2, we
have xn ∈ rbF (X,xn+1).

In either case, xn ∈ F (X,xn+1). Moreover, if xn is not an
interior local minimum for some n, then after some finite
number m of iterations the second case occurs (recall, we
assume that (In) contains every element of I an infinite
number of times), therefore xn ∈ rbF (X,xn+m). But this
implies dimF (X,xn+m) > dimF (X,xn). If xn were not
an interior local minimum for any n, for some n we would
have dimF (X,xn) > dimX , which is impossible.

Since xn ∈ F (X,xn+1) for all n, the faces F (X,x0) ⊆
F (X,x1) ⊆ · · · form a non-decreasing chain. In particular,
x0 ∈ F (X,xn) for all n. Since xn is an interior local mini-
mum for some n, x0 is a pre-interior local minimum.

Theorem 13. Let (xn) be a sequence satisfying (1) such
that x0 is a pre-interior local minimum, i.e., x0 ∈ F (X,x)
for some interior local minimum x. Then for all n we have
xn ∈ F (X,x) and f(xn) = f(x0).

Proof. We will use induction on n. The claim trivially holds
for n = 0. We will show that for every n, xn ∈ F (X,x)
implies xn+1 ∈ F (X,x) and f(xn+1) = f(xn).

Let xn ∈ F (X,x). By Lemma 1, there is u ∈ X such
that x ∈ ri[xn, u]. By Lemma 3, there is a point

v ∈ ri[u, xn+1] ∩ ri[x, x+ xn+1 − xn].
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Since u, xn+1 ∈ X , we have v ∈ X . Since xn+1−xn ∈ In,
we have v ∈ x+ In. Since x ∈Mf (X ∩ (x+ In)), this im-
plies f(x) ≤ f(v). Since [x, x+xn+1−xn] = [xn, xn+1]+
x − xn, by linearity of f we have f(xn) ≤ f(xn+1). But
from (1) also f(xn+1) ≤ f(xn), hence f(xn+1) = f(xn).
This implies f(v) = f(x). Since x ∈ riMf (X ∩ (x+ In)),
we have v ∈Mf (X∩(x+In)). By Lemma 2, v ∈ F (X,x).
Since u, xn+1 ∈ X and v ∈ F (X,x), the definition of face
gives xn+1 ∈ F (X,x).

Corollary 14. Let (xn) be a sequence satisfying (3) such
that x0 is a pre-interior local minimum. Then there exists n
such that xn is an interior local minimum.

Proof. Apply first Theorem 13 and then Theorem 12.

Corollary 15. For every sequence (xn) satisfying (3), x0 is
a pre-interior local minimum iff f(xn) = f(x0) for all n.

Proof. The ‘if’ direction follows from Theorem 12. The
‘only-if’ direction follows from Theorem 13.

5. Convergence
Here we examine convergence properties of sequences

satisfying (3). We first give a general convergence result
in §5.1 and then apply it to our situation in §5.2.

5.1. General Convergence Result

Let p: X → X and f : X → R be continuous functions.
Let (xn) be a sequence satisfying

xn+1 = p(xn) ∀n = 0, 1, . . . . (10)

Let
X∗ = {x ∈ X | f(p(x)) = f(x) }. (11)

Theorem 16. If the sequence (f(xn))∞n=0 is convergent,
then every cluster point2 of the sequence (xn) is in X∗.

Proof. Let x be a cluster point of the sequence (xn), i.e.,
for some strictly increasing sequence (kn) we have

lim
n→∞

xkn = x. (12)

Applying the continuous map p to (12) yields

p
(

lim
n→∞

xkn
)

= lim
n→∞

p(xkn) = lim
n→∞

xkn+1 = p(x). (13)

We show that

f(x) = lim
n→∞

f(xkn) = lim
n→∞

f(xn) = lim
n→∞

f(xkn+1)

= f(p(x)).

The first and last equality hold by applying the continuous
function f to equality (12) and (13). The second and third
equality hold because the sequence (f(xn)) converges, thus
every its subsequence converges to the same number.

2A cluster point (also known as limit point or accumulation point) of a
sequence is the point of convergence of its converging subsequence.

Let d: X2 → R+ be a metric on X . Let

d(Y, x) = inf
y∈Y

d(x, y) (14)

denote the distance of a point x ∈ X from a set Y ⊆ X .

Lemma 17. For every Y ⊆ X , the function d(Y, ·) is Lips-
chitz.

Proof. For every x, y ∈ X and z ∈ Y we have d(Y, x) ≤
d(x, z) ≤ d(x, y) + d(y, z). Taking inf over z ∈ Y on the
right gives d(Y, x) ≤ d(x, y) + d(Y, y). Swapping x and y
gives |d(Y, x)− d(Y, y)| ≤ d(x, y).

Lemma 18. A sequence of real numbers is convergent if it
is bounded and has a unique cluster point.

Proof. Let x be a cluster point of a bounded sequence (xn).
Suppose (xn) does not converge to x. Then for some ε > 0,
for every m there is n > m such that |xn−x| > ε. So (xn)
has a subsequence (yn) such that |yn − x| > ε for all n. As
(yn) is bounded, it has a convergent subsequence, (zn). But
(zn) clearly cannot converge to x, a contradiction.

Theorem 19. If the sequence (f(xn)) is convergent and the
sequence (xn) is bounded, then lim

n→∞
d(X∗, xn) = 0.

Proof. Since the function d(X∗, ·) is Lipschitz and the
sequence (xn) is bounded, the sequence (d(X∗, xn))
is bounded. Thus, it has a convergent subsequence,
(d(X∗, yn)) where (yn) is a subsequence of (xn). By
Lemma 18, it suffices to show that lim

n→∞
d(X∗, yn) = 0.

As a subsequence of (xn), the sequence (yn) is bounded.
Thus it has a convergent subsequence3, (zn). Thus,

x = lim
n→∞

zn (15)

is a cluster point of (xn). We claim that

0 = d(X∗, x) = lim
n→∞

d(X∗, zn) = lim
n→∞

d(X∗, yn).

The first equality holds by Theorem 16. The second
equality is obtained by applying the continuous function
d(X∗, ·) to (15). The last equality holds because the se-
quence (d(X∗, yn)) is convergent, hence its subsequence
(d(X∗, zn)) converges to the same number.

Note, Theorem 19 does not imply that (xn) converges to
any point, it only says that (xn) converges to the set X∗.
Neither it implies that the map p has a fixed point. We re-
mark that Theorem 19 remains true if the function d(X∗, ·)
is replaced by any Lipschitz function e: X → R such that
e(x) = 0 iff x ∈ X∗. One such function was proposed for
max-sum diffusion in [18], see also [17, §8].

3Because (xn) is contained in a closed convex subset X of a finite-
dimensional real vector space V .
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5.2. Convergence for the Relative Interior Rule

To apply this result to sequences satisfying the relative
interior rule, we fix the choice of minimizers in (3) by as-
suming that for each I ∈ I, a continuous map pI : X → X
is given that satisfies

pI(x) ∈ riMf (X ∩ (x+ I)) (16)

for every x ∈ X . We further assume that the elements of I
in (3) are visited in a (quasi-)cyclic order. In one such it-
eration cycle, all elements of I are visited (some possibly
more than once), in a fixed order defined by a surjective
map σ: {1, . . . ,m} → I, where m ≥ |I|. The action of the
iteration cycle is thus described by the map

pσ = pσ(1) ◦ · · · ◦ pσ(m). (17)

We finally define the map p from §5.1 to be

p = (pσ)k+1 where k = dimX (18)

(i.e., p is the composition of pσ with itself (k + 1)-times).
In Theorem 12, the sequence (In) was assumed to con-

tain every element of I an infinite number of times. But our
(quasi-)cyclic order has a stronger property: each element
of I is always visited again after at mostm iterations. Thus,
Theorem 12 can be strengthened as follows:

Theorem 20. Let x ∈ X and f(p(x)) = f(x). Then p(x)
is an interior local minimum and x is a pre-interior local
minimum.

Proof. Similarly to the proof of Theorem 12, it holds that:
• If x is an interior local minimum, then x ∈

riF (X, pσ(x)).

• If x is not an interior local minimum, then x ∈
rbF (X, pσ(x)), so dimF (X, pσ(x)) > dimF (X,x).

Therefore, if f(p(x)) = f(x) and p(x) were not an interior
local minimum, we would have dimF (X, p(x)) > dimX ,
a contradiction. Since x ∈ F (X, p(x)), x is a pre-interior
local minimum.

Combining Theorems 13 and 20, we see that the set (11)
contains all pre-interior local minima and only them. The
objective function f is convex on V , hence continuous. For
a sequence (xn) defined by (10) and (18), Theorems 16
and 19 thus imply the following:

Corollary 21. If the sequence (f(xn)) is convergent, then
every cluster point of (xn) is a pre-interior local minimum.

Corollary 22. If the sequence (xn) is bounded and the se-
quence (f(xn)) is convergent, then (xn) converges to the
set of pre-interior local minima.

As the sequence (f(xn)) is non-increasing, it is conver-
gent if f is bounded below on X . Trivially, the sequence
(xn) is bounded if the setX is bounded. But, since (f(xn))
is non-increasing, there is a weaker (and hence more useful)
sufficient condition: (xn) is bounded if the level set

X0 = {x ∈ X | f(x) ≤ f(x0) } (19)

is bounded.

6. Non-linear Objective Function
As we said, the minimization of a convex function on

a convex set can be written in the epigraph form, which is
the minimization of a linear function on a convex set. Here
we show that this transformation allows us to generalize our
results from linear to non-linear convex objective functions.

The epigraph of a function f : X → R is the set

epi f = { (x, t) ∈ X × R | f(x) ≤ t }. (20)

If X ⊆ V is closed convex and f is convex, then epi f is
closed convex. We have

min
x∈X

f(x) = min
(x,t)∈epi f

t = min
x̄∈epi f

π(x̄) (21)

where π: V × R → R is the linear function defined by
π(x, t) = t, i.e., the projection on the t-coordinate. For
every (x, t) ∈ Mπ(epi f) we have t = f(x), i.e., t is the
minimum value of f on X . Moreover,

Mf (X)× {t} = Mπ(epi f), (22a)
riMf (X)× {t} = riMπ(epi f). (22b)

The following lemma will allow us to show that the con-
cepts of local minima and the updates (1) and (3) remain
‘the same’ if we pass to the epigraph form, provided that in-
stead of a subspace I we use the subspace Ī = I×R. To il-
lustrate this, consider the caseX = V = Rd and coordinate
descent. In every iteration, we minimize f(x1, . . . , xd) over
a single variable xi. In the epigraph form, we would min-
imize t subject to f(x1, . . . , xd) ≤ t over the pair (xi, t).
Clearly, both forms are equivalent.

Lemma 23. Let X ⊆ V be convex, f : X → R be convex,
and I ⊆ V be a subspace. Let Ī = I×R, and x̄ = (x, t′) ∈
epi f . Let t be the minimum value of f onX∩(x+I). Then

Mf (X ∩ (x+ I))× {t} = Mπ(epi f ∩ (x̄+ Ī)),

riMf (X ∩ (x+ I))× {t} = riMπ(epi f ∩ (x̄+ Ī)).

Proof. For any Y ⊆ V ,

epif ∩ (Y ×R) = {(x,t)∈X×R | f(x)≤ t}∩ (Y ×R)

= {(x,t)∈ (X×R)∩ (Y ×R) | f(x)≤ t}
= {(x,t)∈ (X ∩Y )×R | f(x)≤ t}
= epif |X∩Y
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where f |X∩Y denotes the restriction of the function f to the
set X ∩Y . Since

x̄+ Ī = (x,t′)+(I×R) = (x+I)×(t′+R) = (x+I)×R,

we have epif∩(x̄+ Ī) = epif |X∩(x+I). Now Lemma 23 is
just equalities (22) applied to the function f |X∩(x+I).

By letting y = x and t = f(x), the lemma shows that
x is a local [interior local] minimum of f onX with respect
to I iff (x, f(x)) is a local [interior local] minimum of π on
epi f with respect to Ī = { I × R | I ∈ I }. Similarly, the
results from §4 and §5 extend to general convex functions f .

7. Application to MAP Inference
Here we show how out theoretical results manifest them-

selves in convergent message-passing methods for MAP in-
ference. MAP inference in a graphical model (with pairwise
factors) leads to the problem4

F (θ) = max
x:V→L

[∑
i∈V

θi(xi) +
∑
{i,j}∈E

θij(xi, xj)
]

(23)

where (V,E) with E ⊆
(
V
2

)
is an undirected graph, L is

a label set, and θi: L → R and θij : L2 → R are weight
functions (adopting that θij(x, y) = θji(y, x)).

The objective of (23) is preserved by replacing weights θ
with reparameterized weights θδ given by

θδi (x) = θi(x)−
∑
j∈Ni

δij(x) (24a)

θδij(x, y) = θij(x, y) + δij(x) + δji(y) (24b)

where δ is the vector of ‘messages’ δij : L → R (i ∈ V ,
j ∈ Ni), and Ni = { j ∈ V | {i, j} ∈ E } is the set of
neighbors of vertex i. In particular, F (θ) = F (θδ) for all δ.

Many LP-based MAP inference algorithms minimize a
convex piecewise-affine upper bound on (23) over reparam-
eterizations. Two such bounds are

U1(θ) =
∑
i∈V

max
x∈L

θi(x) +
∑
{i,j}∈E

max
x,y∈L

θij(x, y),

U2(θ) = max
{

max
i∈V

max
x∈L

θi(x) , max
{i,j}∈E

max
x,y∈L

θij(x, y)
}
.

Clearly,
F (θ) ≤ U1(θ) ≤ nU2(θ) (25)

where n = |V | + |E|. Minimizing U1(θδ) or U2(θδ)
over δ can be seen as a dual LP relaxation of (23). If the
graph (V,E) is connected, at optimum we have U1(θδ) =
nU2(θδ), so these two relaxations are equivalent. For de-
tails see, e.g., [25, 24].

4Since this section on, the names of variables, sets and functions (such
as x or V ) have different meanings than in the previous sections.

It is known that coordinate-wise local minima of these
problems can be characterized by arc consistency [25]. For
a weight vector θ, define the boolean (0-1) vector θ̄ by

θ̄i(x) = [[θi(x) = max
x′∈L

θi(x
′)]], (26a)

θ̄ij(x, y) = [[θij(x, y) = max
x′,y′∈L

θij(x
′, y′)]]. (26b)

This boolean vector can be seen to represent a constraint
satisfaction problem (CSP). A CSP θ̄ is arc consistent if

θ̄i(x) =
∨
y∈L

θ̄ij(x, y) (27)

for all i ∈ V , j ∈ Ni, x ∈ L (where ∨ denotes disjunction).
Given a CSP θ̄, the arc consistency algorithm recursively
sets components of θ̄ to 0 until θ̄ becomes arc consistent.
The resulting (unique) CSP is known as the arc consistency
closure (called kernel in [25]) of θ̄. It can be shown that a
CSP θ̄ has a non-empty (not all-zero) arc consistent closure
iff it has a non-empty arc consistent subset, i.e., iff there is
a non-empty arc consistent CSP θ̄′ such that θ̄′ ≤ θ̄ (where
≤ is component-wise).

It can be shown that δ is an interior local minimum of
the minimization of U1(θδ) iff θ̄δ is arc consistent, and δ is
a pre-interior local minimum iff θ̄δ has a non-zero arc con-
sistency closure5. Therefore, (pre-)interior local minimality
generalizes the conditions based on arc consistency.

Theorem 24. δ is an interior local minimum of U1(θδ)
(w.r.t. coordinate blocks δij) iff θ̄δ is arc consistent.

Proof. Let i ∈ V and j ∈ Ni and consider the minimization
of U1(θδ) over the variable block δij ∈ RL. We have

U1(θδ) = max
x∈L

(ax − δx︸ ︷︷ ︸
θδi (x)

) + max
x∈L

( bx + δx︸ ︷︷ ︸
max
y

θδij(x,y)

) + c (28)

where a, b ∈ RL and c ∈ R do not depend on δij and we
denoted δij(x) = δx for brevity. We write this minimization
as a linear program, writing also its dual (on the right):

u+ v → min
∑
x(axαx + bxβx)→ max

ax − δx ≤ u αx ≥ 0 ∀x ∈ L
bx + δx ≤ v βx ≥ 0 ∀x ∈ L

δx ∈ R αx − βx = 0 ∀x ∈ L
u ∈ R

∑
x αx = 1

v ∈ R
∑
x βx = 1

It is well-known from linear programming theory that a
primal solution is in the relative interior of the primal op-
timal set iff the strict complementary slackness conditions

5Similar statements hold for U2 (and proofs are even simpler). But in
this case, the boolean vector θ̄ must not be defined by (26) but by θ̄i(x) =
[[θi(x) = U2(θ)]] and θ̄ij(x, y) = [[θij(x, y) = U2(θ)]].
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hold for some feasible dual solution. These conditions in
our case read (note the third dual constraint, αx = βx)

ax − δx = u ⇐⇒ αx > 0 ⇐⇒ bx + δx = v

for all x ∈ L. But these are precisely the arc consistency
conditions θ̄δi (x) =

∨
y∈L θ̄

δ
ij(x, y).

Theorem 25. δ is a pre-interior local minimum of U1(θδ)
iff θ̄δ has a non-empty arc consistency closure.

Proof. It has been shown [25, Theorem 7] that the recursive
zeroing of components of θ̄δ during the arc consistency al-
gorithm can be done by a sequence of reparameterizations
(i.e., changes of vector δ) that satisfy (3). Zeroing a compo-
nent of θ̄δ corresponds to moving to a neighboring face of
a higher dimension, as in Theorem 12. This process never
decreases U1(θδ) iff the arc consistency closure of the ini-
tial boolean vector θ̄δ was non-empty [25, Theorem 7]. By
Corollary 15, this is equivalent to the initial δ being a pre-
interior local minimum.

7.1. Max-Sum Diffusion

The max-sum diffusion update [18, 25] chooses i ∈ V
and j ∈ Ni and changes vector δij ∈ RL that the equality

θδi (x) = max
y∈L

θδij(x, y) (29)

becomes satisfied for all x ∈ L. Clearly, equality (29) im-
plies θ̄δi (x) =

∨
y∈L θ̄

δ
ij(x, y). By Theorem 24, the up-

date satisfies the relative interior rule (3) for the problem of
minimizing U1(θδ) and fixed points of max-sum diffusion
(when (29) holds for all i ∈ V , j ∈ Ni, x ∈ L) is precisely
interior local minima.

The update just described changed a variable block δij
to enforce equality (29) for all x ∈ L. It can be shown
that changing a single variable δij(x) to enforce (29) sat-
isfies the relative interior rule for the coordinate descent of
U2(θδ) (rather than U1(θδ)). Here, the situation is partic-
ularly simple because this is a univariate problem, hence
its optimal set is a single point or an interval. It can be
shown that in the latter case, the update chooses a point in
the middle of this interval. We observed that modifying the
update such that δij(x) was chosen elsewhere (not in the
middle) inside this interval did not affect the algorithm be-
havior much. However, updates choosing δij(x) to be one
of the endpoints of the interval typically got stuck quickly
in a very poor (non-pre-interior) local minimum, even for
very small instances.

Regarding convergence, Corollary 22 assumes that the
sequence of vectors δ during diffusion is bounded. Though
this has been always observed, the proof is unknown. This
technical issue can be easily fixed as follows: rather than
minimizing U1(θδ) over δ, minimize U1(θ′) over θ′ ∈ X

where X consists of vectors θδ for all possible δ. It can
be shown that this reformulation (in fact, an affine trans-
formation of variables) preserves the relative interior rule.
Then the set (19) corresponds to the level set X0 = { θ′ ∈
X | U1(θ′) ≤ u0 }, where u0 is the initial value of the up-
per bound. This set is bounded due to a simple argument:
if some component of θδ decreases by a changing δ, then,
by (24), inevitably some other component must increase.
Therefore, Corollary 22 applies, showing that vectors θδ

converge to a pre-interior local minimum of U1 on X .
At any fixed point δ of max-sum diffusion (where (29)

holds globally), θ̄δ is arc consistent, hence δ is an interior
local minimum. In fact (as noted in e.g. [25]), the vectors
δ have been always observed to converge to a fixed point
(which is a stronger statement than that given by Corol-
lary 22), yet the proof of this is unknown.

7.2. MPLP

The MPLP update [3] chooses an edge {i, j} ∈ E and
changes the variables δij and δji so that the equalities

θδi (x) = max
y

[
θδij(x, y) + θδj (y)

]
, (30a)

θδj (y) = max
x

[
θδij(x, y) + θδi (x)

]
(30b)

become6 satisfied for all x, y ∈ L. This update minimizes
U1(θδ) over the variable block (δij , δji). In fact, it can be
checked that (30) implies maxx,y θ

δ
ij(x, y) = 0, so MPLP

maintains the constraint θδij(x, y) ≤ 0.
In contrast to max-sum diffusion, MPLP fixed points

(where (30) holds for all {i, j} ∈ E and x, y ∈ L) are not
interior local minima but only pre-interior local minima.

Theorem 26. At every MPLP fixed point, the arc consis-
tency closure of θ̄δ is not empty7.

Proof. It is easy to check that at a MPLP fixed point,

θ̄δi (x) =
∨
y

[
θ̄δij(x, y) ∧ θ̄δj (y)

]
(31)

holds for all i ∈ V , j ∈ Ni, x ∈ L. Let θ̄′ be given by

θ̄′i(x) = θ̄δi (x),

θ̄′ij(x, y) = θ̄δij(x, y) ∧ θ̄δi (x) ∧ θ̄δj (y).

CSP θ̄′ is non-empty, arc consistent, and satisfies θ̄′ ≤ θ̄δ ,
therefore θ̄δ has a non-empty arc consistent closure.

6Expressed more explicitly, equality (30a) is enforced by setting
δij(x) := δij(x) + 1

2

[
θδi (x)−maxy

(
θδij(x, y) + θδj (y)

)]
(symmetri-

cally for (30b)). Note that the right-hand side does not depend on δij(x),
because it cancels out. After doing this cancellation explicitly, this update
becomes the same as that in [3].

7The relation between arc consistency and MPLP++ (a modified ver-
sion of MPLP) has been discussed in [21].
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The MPLP update can choose a point on the relative
boundary of the set of minimizers, hence it does not sat-
isfy (3). It can be shown (if p is the composition of MPLP
updates, similarly as in §5.2) that (11) is still the set of pre-
interior local minima and hence Theorem 19 applies. This
follows from combining Theorems 13, 24 and Theorem 27
below. By a MPLP update cycle, we mean the MPLP up-
dates (30) done for all edges {i, j} ∈ E in some fixed order.

Theorem 27. If the arc consistency closure of θ̄δ is empty,
then after at most |L||V |+ |L|2|E|MPLP update cycles the
upper bound U1(θδ) decreases.

Proof. One can check that if (31) does not hold for some
i ∈ V , j ∈ Ni, x ∈ L, then the MPLP update on edge {i, j}
decreases U1(θδ) or sets some component of θ̄δ from 1 to 0.
Thus, after at most n cycles, where n = |L||V | + |L|2|E|
is the number of components of θ̄δ , U1(θδ) decreases or θ̄δ

satisfies (31) for all i ∈ V , j ∈ Ni, x ∈ L.

7.3. Potts Problem

If θij(x, y) = −[[x = y]] in (23), we speak about the
Potts problem. In that case, the dual LP relaxation can be
simplified [15]: minimize U1(θδ) over δ subject to

δij(x) + δji(x) = 0, (32a)
− 1

2 ≤ δij(x) ≤ 1
2 . (32b)

Though ignoring these constraints would not change the op-
timal value of U1(θδ), it is interesting to try and design
a coordinate-descent method which includes them. This
is a challenge because, to our knowledge, no convergent
message-passing methods for problems with inequality con-
straints (here, (32b)) have been proposed so far. Of course,
this method would probably have mostly theoretical impact,
as the Potts problem has been subject to intensive research
resulting in many efficient algorithms.

Constraints (32) imply that maxx,y θ
δ
ij(x, y) = 0 for all

{i, j} ∈ E, thus the pairwise terms in U1(θδ) can be ig-
nored. After orienting the graph (V,E) arbitrarily (so that
E ⊆ V 2), we can eliminate constraint (32a) by keeping the
variables δij(x) only for (i, j) ∈ E, and write (24a) as

θδi (x) = θi(x) +
∑

(i,j)∈E

δij(x)−
∑

(j,i)∈E

δji(x). (33)

We propose the update

δij(x) := 1
2h(max

y 6=x
θδi (y)− θδi (x) + δij(x))−

1
2h(max

y 6=x
θδj (y)− θδj (x)− δij(x)) (34)

where h(t) = min{ 1
2 ,max{t,− 1

2}} is the projection of t
onto the interval [− 1

2 ,
1
2 ]. Note that the right-hand side

of (34) does not depend on δji(x) (it cancels out).

Lemma 28. Let a, b, c, d ∈ R ∪ {−∞,+∞} satisfy a ≤ b
and c ≤ d. Let f : R → R be strictly decreasing for x < a,
constant for a < x < b and strictly increasing for x > b.
Then the set of minima of f on the interval [c, d] is the in-
terval [g(a), g(b)] where g(x) = min{c,max{x, d}} is the
projection of x onto [c, d].

Proof. If [a, b]∩ [c, d] 6= ∅, then [g(a), g(b)] = [a, b]∩ [c, d]
and the result is immediate. If [a, b] ∩ [c, d] = ∅, two cases
can occur:
• If a ≤ b < c ≤ d, then f is strictly increasing on [c, d],

hence the optimal set is {c} = [c, c] = [g(a), g(b)].

• If c ≤ d < a ≤ b, then f is strictly decreasing on [c, d],
hence the optimal set is {d} = [d, d] = [g(a), g(b)].

Theorem 29. Update (34) computes a point in the relative
interior of the minimizers of U1(θδ) subject to (32b) over
the single variable δij(x).

Proof. If we update each variable separately, then the opti-
mization problem for δij(k) is given as

max{ θδi (k)− δij(k)︸ ︷︷ ︸
a

+δij(k), max
k′ 6=k

θδi (k
′)︸ ︷︷ ︸

b

}+

max{ θδj (k) + δij(k)︸ ︷︷ ︸
c

−δij(k), max
k′ 6=k

θδj (k
′)︸ ︷︷ ︸

d

} (35)

subject to (32b), where a, b, c, d do not depend on δij(k).
Function (35) is convex piecewise affine and has two

breakpoints, b − a and c − d, which may possibly coin-
cide. The function is strictly decreasing below the smaller
breakpoint and strictly increasing above the larger break-
point. The set of minima is between the breakpoints, where
the function is constant (or at the single breakpoint in case
that the values coincide).

By Lemma 28, the set of optima subject to (32b) is the
interval with endpoints h(b − a) and h(c − d). The point
δij(k) = 1

2 [h(b− a) +h(c− d)] is in the relative interior of
this interval. Since h(t) = −h(−t), this is (34).

We compared this method with max-sum diffusion
(MSD) on toy image segmentation tasks8. The input data
were synthetic images, obtained by adding i.i.d. noise from
N (0; 1) to each of six hand-made images (with inten-
sity/RGB values between 0 and 1), resulting in 30 noisy
versions of each hand-made image. The 20 × 20 images
are sub-sampled versions of the 200 × 200 images. In Ta-
ble 1 we report for each hand-made image the relative dif-
ference ∆rel-val = (UPotts−UMSD)/UMSD of optimal val-
ues of MSD and Potts updates after convergence (averaged
over the 30 instances) and the difference ∆label in extracted

8Note that the MSD local minima have very similar quality that TRW-S
[9] local minima, the main difference is in runtimes.
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class size, labels ∆rel-val ∆label
Circle 20x20, 2 0 0
Circles 20x20, 3 4.80 · 10−7 0
Areas2 20x20, 2 0 0
Areas3 20x20, 3 5.35 · 10−8 0
Areas4 20x20, 4 0 0

Random 20x20, 4 4.12 · 10−3 0
Circle 200x200, 2 1.51 · 10−8 2.50 · 10−5

Circles 200x200, 3 8.37 · 10−7 2.67 · 10−5

Areas2 200x200, 2 1.28 · 10−5 6.00 · 10−5

Areas3 200x200, 3 6.32 · 10−5 2.55 · 10−3

Areas4 200x200, 4 1.17 · 10−4 6.00 · 10−3

Random 200x200, 4 9.48 · 10−3 1.37 · 10−2

Table 1. Comparison of MSD and Potts updates on toy image seg-
mentation problems. There was 30 instances from every type.

segmentation computed as 1-norm-difference in the one-hot
encoding (averaged over instances and pixels). Figure 1
shows an example image from each class and its segmen-
tation by MSD updates and Potts updates. The runtimes
were comparable, in fact often better for the Potts updates.

We can see that the Potts updates typically achieved a
somewhat poorer value of the bound than max-sum diffu-
sion, yet the differences are small. The differences in la-
belings are even less pronounced. We conclude that the up-
dates (32) are competitive to MSD.

7.4. Max-marginal Averaging

Here we consider the Lagrangean decomposition frame-
work [7, 11] for problem (23), understanding that it also
includes TRW-S [9]. We will write (23) as

F (θ) = max
x∈LV

〈θ, φ(x)〉 (36)

where φ: LV → {0, 1}I is a suitable feature map and I is
the set of features (labels and label pairs) [23]. An upper
bound on (36) is constructed by decomposition to subprob-
lems. A subproblem s ∈ S has weights θs ∈ RI . Assuming

θ =
∑
s∈S

θs (37)

and swapping max and sum in (36), we obtain two upper
bounds (analogically to (25))

F (θ) = F
(∑
s∈S

θs
)
≤
∑
s∈S

F (θs) ≤ |S|max
s∈S

F (θs). (38)

The subproblem weights are constrained by

θsi = 0 ∀s ∈ S, i ∈ I \ Is (39)

where each set Is ⊆ I is such that the function F (θs) is
tractable to evaluate (e.g., Is can define a subtree of (V,E)).

Figure 1. Examples of image segmentation by max-sum diffusion
and updates (32). Each row shows an example image from each
class, in the order of rows of Table 1. The columns show the in-
put image, the segmentation by MSD, and the segmentation by
updates (32), respectively.

We want to minimize one of the upper bounds (38) over the
variables θsi subject to (37) and (39).

For I and φ induced by (23) and natural choices of sets
Is (e.g., the rows and columns of an image), the numbers
F (θs) can always be made the same for all s ∈ S while
keeping (37) and (39). Therefore, the two upper bounds
in (38) coincide at optimum.

In [9, 7], the upper bound is minimized by ‘max-
marginal averaging’. The max-marginal of the function
〈θ, φ(x)〉 associated with feature i ∈ I is the number

Fi(θ) = max
x:φi(x)=1

〈θ, φ(x)〉. (40)

The update chooses i ∈ I and changes the variable block
(θsi )s∈Si so that the max-marginals Fi(θs) become the same
for all s ∈ Si, where Si = { s ∈ S | i ∈ Is }. We show that
this update minimizes maxs F (θs) over (θsi )s∈Si , comply-
ing to the relative interior rule.

It follows from (40) that Fi(θ) depends on θi linearly:
Fi(θ) = a + θi where a does not depend on θi. By (36)
and (40), F (θ) = max{b, Fi(θ)} where b does not depend
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on θi. Hence,

max
s
F (θs) = max{max

s∈S
(as + θsi︸ ︷︷ ︸
Fi(θs)

), c } (41)

where as and c do not depend on θsi . This is to be minimized
over (θsi )s∈Si subject to (37) and (39). It can be shown that
the condition that the numbers as + θsi be the same for all
s ∈ Si determines the variables (θsi )s∈Si uniquely, and that
these variables are a solution from the relative interior of the
optimal set of this problem.

Theorem 30. The condition that as+θsi be the same for all
s ∈ Si determines variables (θsi )s∈Si uniquely.

Proof. We want that as + θsi = l for all s ∈ Si, where l is
an unknown constant. Summing this over s ∈ Si gives

|Si|l =
∑
s∈Si

(as + θsi ) = θi +
∑
s∈Si

as,

which is satisfied only by l =
(
θi +

∑
s∈Si a

s
)
/|Si|. Thus,

there is unique solution, θsi = l − as, for each θsi .

Theorem 31. Values θsi equalizing as + θsi for all s ∈ Si
are the in the relative interior of the optimizers of (41).

Proof. Let us write the problem of minimizing (41) over
(θsi )s∈Si subject to (37)+(39) as a linear program (on the
left), writing also its dual (on the right):

z → min
∑
s asqs + cp→ max

z ≥ as + θsi qs ≥ 0 ∀s ∈ Si
z ≥ c p ≥ 0∑

s θ
s
i = θi y ∈ R
z ∈ R p+

∑
s qs = 1

xs ∈ R y − qs = 0 ∀s ∈ Si

We will show that the primal solution (θsi )s∈Si given by
Theorem 30 is in the relative interior of the set of minimiz-
ers by presenting a dual feasible solution that satisfies strict
complementary slackness:

• If θi +
∑
s∈Si a

s < |Si|c, then l < c and the dual solu-
tion is qs = 0 for all s ∈ Si, y = 0 and p = 1.

• If θi +
∑
s∈Si a

s = |Si|c, then l = c and the dual solu-
tion is y = p = 1/(|Si|+ 1) and qs = y for all s ∈ Si.

• If θi +
∑
s∈Si a

s > |Si|c, then l > c and the dual solu-
tion is y = 1/|Si|, p = 0 and qs = y for all s ∈ Si.

For our feasible set defined by (37)+(39), the set (19) is
bounded by a similar argument as in §7.1, so Corollary 22
shows convergence to the set of pre-interior local minima.

8. Application to Weighted Vertex Cover
Of course, one can ask if our framework can help design

practical algorithms for large-scale optimization of some
new convex problems, unrelated to MAP inference. As a
preliminary step in this direction, we propose a coordinate
descent update for the LP relaxation of the minimum vertex
cover problem. This LP relaxation reads

min
x: V→[0,1]

∑
i∈V

θixi s.t. xi + xj ≥ 1 ∀{i, j} ∈ E (42)

where (V,E) is an undirected graph with node weights
θ: V → R+. The dual problem reads

max
y: E→R+

( ∑
{i,j}∈E

yij +
∑
i∈V

min
{
θi −

∑
j∈Ni

yij , 0
})
. (43)

To optimize the dual problem over a single variable
yij ≥ 0, we propose the update

yij = 1
2 (max{θi − a−ji , 0}+ max{θj − a−ij , 0}) (44)

where a−ji =
∑
k∈Ni\{j} yik and symmetrically for a−ij .

Theorem 32. Point (44) is in the relative interior of the set
of maximizers of (43) over the single variable yij ≥ 0.

Proof. The objective of (43) as a function of yij reads

yij + min{θi − a−ji − yij , 0}+ min{θj − a−ij − yij , 0}

(up to a constant), which is a concave piecewise-affine func-
tion whose set of maxima is the interval with endpoints
θi − a−ji and θj − a−ij . This function is strictly increasing
for yij below the smaller endpoint, constant on the inter-
val, and strictly decreasing above the greater endpoint. By
Lemma 28 (with c = 0 and d = +∞), the set of maximizers
of the function subject to yij ≥ 0 is the interval with end-
points max{θi− a−ji , 0} and max{θj − a−ij , 0}. Point (44)
lies in the relative interior of this interval.

We applied coordinate maximization with update (44) to
all 41 minimum vertex cover instances from [26], for which
we sampled the vertex weights i.i.d. from the absolute val-
ues of a Gaussian. On all of the instances, the method
achieved global optimality of the dual LP relaxation and
was faster than the simplex algorithm.

9. Conclusion
We have presented a theoretical framework for apply-

ing block-coordinate methods to general convex problems.
Among our main results are characterizations of various
types of (block-)coordinate local minima, a proof of con-
vergence under natural assumptions, and mainly the iden-
tification of the relative interior rule, which ensures desir-
able properties of the method. We hope that these theoret-
ical results will help other researchers to better understand
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existing versions of block-coordinate descent methods and
design new versions.

We see the impact of our paper to be primarily theoreti-
cal. The obvious and arguably the most important question
is whether the theory can lead to new powerful large-scale
optimization algorithms, possibly for problems not closely
related to MAP inference. Though we outlined two such
algorithms in §7.3 and §8, this question is wide open.
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Convex Analysis. Grundlehren Text Editions. Springer, 2004.

[6] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya
Keerthi, and S. Sundararajan. A dual coordinate descent
method for large-scale linear SVM. In 25th Intl. Conference
on Machine Learning (ICML), pages 408–415, 2008.

[7] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Will-
sky. Lagrangian relaxation for MAP estimation in graphi-
cal models. In 45th Allerton Conference on Communication,
Control and Computing, 2007.

[8] Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht,
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