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1. Connecting the Empirical and Theory Con-
tributions

In the theory sections of this paper we identified the two
salient properties that affect local convexity:

Noise: Lower edge noise yields more local convexity

Graph Structure: Greater connectivity yields more local
convexity.

The interaction of the two factors is complicated, and we an
give exact expression in terms of the spectrum of a particular
weighted graph Laplacian (Equation 5). However, we also
separate the two factors to seek insight. As shown in Equa-
tion 17, algebraic connectivity (λ2(G), the second-smallest
eigenvalue of a graph’s Laplacian matrix) is a useful measure
of the graph structure’s contribution to local convexity.

In Figure 1 we look at noise and connectivity on the
empirical experiments from Section 4. We visualize three
factors:

• Synthetic noise level σn

• Graph connectivity λ2(G)

• Multiplicity of the most common minimum %max

For easy problem instances there will be a single dominant
local minimum. Nearly 100% of all of the minima we found
will be identical.

Notice the following in Figure 1:

• Lower λ2(G) tends to yield lower %max.

• Higher σn tends to yield lower %max.

• The %max is sharply lower below a certain connectivity
and below a certain noise level.
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Figure 1. A plot showing how problem difficulty, as quantified by
%max, the multiplicity of the most common minimum, is affected
by noise level and problem connectivity.

2. Empirical Experiments with Outliers
The empirical experiments in Section 4 all used a

Gaussian-like noise model. However, real problems in-
stances commonly have heavy-tailed noise. Here we present
the same types of experiments as in Section 4 but with an
inlier/outlier noise model.

Figure 2 is constructed analogously to rows (4) and (6)
of Table 1. All problem instances were made with identical
σn = 5◦ inlier noise and the columns are varying percent-
ages of outlier edges. Outliers are distributed uniformly at
random over SO(3).

Notice that the better connected graph (row 2) tolerates
more outliers before bad local minima appear everywhere,
but by even 5% outliers both problems look very hard.
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Figure 2. Visualizations in the style of Figure 1 from Section 4 of the paper. All problem instances were constructed from the same Gnm

random graph instance where n = 40. Row (1) has m = 240 and row (2) has m = 400. All instances have the same 5◦ inlier noise applied.
The columns are in order of increasing outlier percentage. Even a few outliers introduce many bad minima to the cost surface. Row (2), the
better connected graph, tolerates more outliers.


