
PQ-NET: A Generative Part Seq2Seq Network for 3D Shapes
Supplementary Materials

Rundi Wu1 Yixin Zhuang1 Kai Xu2 Hao Zhang3 Baoquan Chen1

1Center on Frontiers of Computing Studies, Peking University
2National University of Defense Technology

3Simon Fraser University

A. Overview
This supplementary material contains six parts:
• Sec.B describes the implementation detailed of our

PQ-NET.
• Sec.C describes the data preparation details.
• Sec.D explains the metrics used for the evaluation of

shape generation.
• Sec.E provides comparison results to 3D-PRNN on

generation task.
• Sec.F provides more visual results of partial shape

completion, random shape generation.

B. Implementation Details
In this section, we describe the detailed design and im-

plementation of our PQ-NET architecture along with the
training configuration.

Table 1 and Table 2 list the detailed architecture with spe-
cific parameters of our PQ-NET, divided into part geometry
autoencoder and Seq2Seq autoencoder. For part geometry
autoencoder, we use similar design as IM-NET [1], with
skip connection in the implicit decoder. For Seq2Seq au-
toencoder, we also employ dropout regularization with drop
rate 0.2 in the middle of GRU to reduce overfitting.

As mentioned in the main paper, we train our PQ-NET in
two separate steps. We adopt a progressive strategy to train
our part geometry autoencoder by increasing the resolution
of part volum. Practically, we use resolution of 163, 323

and 643 with batch size 40 and learning rate 5e-4 in our
experiments. Then the part geometry autoencoder is fixed
and used to train the Seq2Seq autoencoder on the resolution
of 643 with batch size as 64 and learning rate as 1e-3. We
use PyTorch [4] framework to implement our PQ-NET and
conduct all the experiments.

C. Data Preparation Details
For all experiments in our paper, we mainly use

three largest categories of PartNet [3], that is, chair, ta-

CNN Encoder
Layer Kernel Size Stride Output Shape
input voxel - - (1,64,64,64)
Conv3D+BN+lReLU (4,4,4) (2,2,2) (32,32,32,32)
Conv3D+BN+lReLU (4,4,4) (2,2,2) (64,16,16,16)
Conv3D+BN+lReLU (4,4,4) (2,2,2) (128,8,8,8)
Conv3D+BN+lReLU (4,4,4) (2,2,2) (256,4,4,4)
Conv3D+Sigmoid (4,4,4) (1,1,1) (128,1,1,1)

Implicit Decoder
Layer Dropout Input Shape Output Shape
feature+coordinates - (128 + 3) (131)
FC+lReLU 0.4 (131) (2048)
FC+lReLU 0.4 (2048 + 131) (1024)
FC+lReLU 0.4 (1024 + 131) (512)
FC+lReLU 0.4 (512 + 131) (256)
FC+lReLU - (256 + 131) (128)
FC+Sigmoid - (128) (1)

Table 1. Architecture of our part geometry autoencoder. Conv3D:
3D Convolutional Layer, BN: Batch Normalization, lReLU: leaky
ReLU, FC: Fully Connected Layer.

Seq2Seq Encoder RNN
Type #layers input size hidden size bidirectional
GRU 2 (128+6+K) 256 True

Seq2Seq Decoder RNN
Type #layers input size hidden size bidirectional
GRU 2 (128+6) 512 False

Seq2Seq Decoder FC
Type input size hidden size output size

FC-lReLU-FC 512 256 128
FC-ReLU-FC 512 128 6
FC-ReLU-FC 512 128 1

Table 2. Architecture of our Seq2Seq autoencoder. K is the maxi-
mum number of parts of all shaeps in the dataset.

ble and lamp. Since each shape in PartNet is par-
titioned into small elements and then grouped follow-
ing a hierarchical structure with each node a seman-
tical label, we use the nodes in the second layer as
our part geometry. The part label we used appears in

1

the file ”partnet-dataset\stats\after merging label ids\xxx-
label-2.txt”, where ”xxx” correspondes to the number of
each shape categories. We remove shapes that contain more
than 10 parts, resulting in 6305 chairs, 7357 tables and 1188
lamps, which are further divided into training, validation
and test sets using official data splits of PartNet. Note that
this upper bound of number of parts can be increased. Ta-
ble 3 shows the statistics result about the number of parts
per shape in our dataset.

Chair Table Lamp
avg #parts 5.59 6.06 2.94
min #parts 2 2 2
max #parts 9 10 7

Table 3. Average, minimum and maximum number of parts per
shape for each category in our dataset.

To prepare the training data for our network, we first vox-
elize the original shape mesh into voxel representation at
643 resolution and fill the interior of the shape voxel using
classic flood filling algorithm. Each part is then scaled to
643 resolution within its bounding box. The resulting 643

part volums are downsampled to 323 and 163 resolution.
With voxelized part geometry at differ resolutions, we fol-
low the sampling approach as in IM-NET to progressively
sample points near the surface with each point a signed dis-
tance to the surface. Specifically, we sample 4096 points
in 163 volum, and with higher resolutions, such as 323 and
643, we sample 8192 and 32768, respectively. The sampled
points together with signed distance values are used to train
our part geometry autoencoder. The box parameters used in
Seq2Seq autoencoder training are produced by calculating
bounding box of each part in original shape voxel. Intu-
itively, the box parameters indicate the deviation and trans-
lation from part local frame to the shape coordinate system.

D. Metrics

We explain the quantitative metrics adopt for generation
task in our paper, i.e. Coverage (COV), Minimum Matching
Distance (MMD) and Jensen-Shannon Divergence (JSD) [].
In their calculation, chamfer distance is used when compar-
ing our method to IM-NET [1] and StructureNet [2] while
IoU is used when comparing to 3D-PRNN [5].

Let G be a set of generated shapes and S be the ground
truth test set.

COV To compute COV, for each shape in G we find its
nearest neighbor in S and mark it as matched. COV is
the fraction of matched shapes in S over the total size of
S . COV roughly represents the diversity of the generated
shapes. A high COV score suggests most of shapes in S
can be roughly represented by shapes in G.

Metrics Method Chair Table Lamp Avg

COV-IoU Ours 58.94 59.80 76.34 65.03
3D-PRNN 51.03 36.44 58.93 48.80

MMD-IoU Ours 0.259 0.271 0.298 0.276
3D-PRNN 0.275 0.357 0.347 0.326

Table 4. Quantitative comparison to 3D-PRNN for 3D shape gen-
eration on three categories: chair, table, lamp.

a) Ours

b) 3D-PRNN

Figure 1. More visual comparison of random generated 3D primi-
tives between ours and 3D-PRNN.

MMD To compute MMD, for each shape in S , we calcu-
late the distance to its nearest neighbor in G. Then MMD is
defined as the average of all these distances. MMD roughly
represents the fidelity of the generated shapes.
JSD In a predefined voxel gird, for each shape of point
cloud form in G, we count the number of points lying in-
side each voxel, and do the same thing for S . Then we get
two distribution in Euclidean 3D space PG and PS . JSD is
defined as the Jensen-Shannon Divergence between the two
distribution.

We use the code from https://github.com/
optas/latent_3d_points for the calculation of the
above metrics.

E. Comparison to 3D-PRNN on Shape Gener-
ation Task

In this section, we demonstrate detailed comparison re-
sults to 3D-PRNN [5] on shape generation task, which are
not fully shown in the main paper due to paper length limi-
tation. Unlike our PQ-NET that generates new shapes from
random noise, 3D-PRNN samples new structure within a
constraint region. For a fair comparison, we follow the set-
ting described in their paper, by sampling the first input fea-
ture of RNN from training data.

2

https://github.com/optas/latent_3d_points

Partial
Input Output Sequence Final

Shape

Figure 2. Visual results of partial shape completion.

Results of quantitative comparison on are shown in
and Table 4. We sampled 2000 random generated shapes
for chair and table, 800 for lamp, to compute the cov-
erage(COV) and minimum matching distance(MMD) be-
tween the generated set and ground truth test set. We
use 1 − IoU as the distance measure when comparing two
shapes. It can be seen that our network outperforms 3D-
PRNN in all of the measurements, which means that our
generation results are more diverse and plausible. More vi-
sual results are shown in Figure 1.

F. More Results
Figure 2 shows visual results for partial shape comple-

tion and Figure 3 at the last page shows more results of our
generated shapes.

References
[1] Z. Chen and H. Zhang. Learning implicit fields for generative

shape modeling. Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

[2] K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. Mitra, and
L. J. Guibas. Structurenet: Hierarchical graph networks for 3d
shape generation. ACM Trans. on Graph. (SIGGRAPH Asia),
2019.

[3] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas,
and H. Su. PartNet: A large-scale benchmark for fine-grained
and hierarchical part-level 3D object understanding. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019.

[4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in PyTorch. In NIPS Autodiff Workshop,
2017.

[5] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3D-
PRNN: Generating shape primitives with recurrent neural net-
works. 2017 IEEE International Conference on Computer Vi-
sion (ICCV), Oct 2017.

3

Figure 3. More visual results of our generated shapes (row 1-6), along with two latent space interpolation (row 7-8). All shapes are sampled
at resolution 2563 and reconstructed using Marching Cubes.

4

