
A. Appendix

A.1. Proof of the error bounds in Theorem 1

In this section, we provide detailed proof for the error
bounds in Theorem 1, in particular, regarding the value of
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, ⌧) in Equation (5).

Proof. We first define the concept of the minimum confi-
dence margin.

Definition 10 (Minimum Confidence Margin). Given a net-
work N , an input v, and a class c, we define the minimum
confidence margin as
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{N (v, c)�N (v, c0)}. (11)

Intuitively, the minimum confidence margin is the dis-
crepancy between the maximum confidence of v being clas-
sified as c and the next largest confidence of v being clas-
sified as c

0. Then, for any input v0 whose optical flow se-
quence is in the subspace of a grid point g, and the input v
corresponding to this optical flow sequence g, we have
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Now, since the optical flow sequence of v0 is in the sub-
space of g, we need to ensure that no class change occurs
between v and v0. That is, Mar(v0

,N (v)) � 0, which
means Mar(v,N (v)) � Mar(v0

,N (v))  Mar(v,N (v)).
Therefore, we have
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And as g is a grid point, the minimum confidence margin
for its corresponding input v can be computed. Finally, we
replace Mar(v,N (v)) with its definition, then we have
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A.2. Proof of the guarantees in Theorem 2

In this section, we provide a detailed proof for the ro-
bustness guarantees in Theorem 2.

Proof. On one hand, we show that kP(v0
)� P(v)k

p

�
R(�, s0) for any optical flow sequence P(v0

) as a ⌧ -grid
point, such that P(v0
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, d) and its correspond-
ing input is an adversarial example. Intuitively, it means
that Player I’s reward from the game G in the initial state s0
is no greater than the Lp distance to any ⌧ -grid manipulated
optical flow sequence. That is, the reward value R(�, s0),
once computed, is a lower bound of the optimisation prob-
lem FMSR(N ,P(v), Lp

, d, ⌧). Note that the reward value
can be obtained as every ⌧ -grid point can be reached by
some game play, i.e., a sequence of atomic manipulations.

On the other hand, from the termination condition tc(⇢)

of the game, we observe that, for some P(v0
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holds, then there must exist some other
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. There-
fore, we have that R(�, s0) is the minimum value of
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among all the ⌧ -grid points P(v0
) such

that P(v0
) 2 B(P(v), Lp

, d) and their corresponding inputs
are adversarial examples.

Finally, we observe that the minimum value of
kP(v0
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is equivalent to the optical flow value re-
quired by Equation (3).

A.3. Details of the video dataset and the network

As a popular benchmark for human action recognition
in videos, UCF101 [22] consists of 101 annotated ac-
tion classes, e.g., JugglingBalls (human-object interaction),
HandstandPushups (body-motion only), HairCut (human-
human interaction), PlayingPiano (playing musical instru-
ments), and FloorGymnastics (sports). It labels 13 320

video clips of 27 hours in total, and each frame has dimen-
sion 320⇥ 240⇥ 3.

In the experiments, we exploit a VGG16 + LSTM archi-
tecture, in the sense of utilising the VGG16 network to ex-
tract the spatial features from the UCF101 video dataset and
then passing these features to a separate RNN unit LSTM.
For each video, we sample a frame every 1000ms and stitch
them together into a sequence of frames. Specifically, we
run every frame from every video through VGG16 with in-
put size 224⇥ 224⇥ 3, excluding the top classification part
of the network, i.e., saving the output from the final Max-
Pooling layer. Hence, for each video, we retrieve a sequence
of extracted spatial features. Subsequently, we pass the fea-
tures into a single LSTM layer, followed by a Dense layer
with some Dropout in between. Eventually, after the final
Dense layer with activation function Softmax, we get the
classification outcome.

We use the categorical cross-entropy loss function and
the accuracy metrics for both the VGG16 and LSTM mod-



Figure 11. Examples of the optical flows extracted from a
BalanceBeam video. Top row: four sampled frames from 0 s to
3 s with original size 320 ⇥ 240 ⇥ 3. 2nd row: the optical flows
(blue arrows) extracted between the frames. 3rd row: one of op-
tical flow’s characteristics: magnitude. Bottom row: the other
optical flow characteristics: direction.

els. Whilst the former has a SGD optimiser and directly
exploits the imagenet weights, we train the latter through
a rmsprop optimiser and get 99.15% training accuracy as
well as 99.72% testing accuracy. Specifically, when the loss
difference cannot reflect the subtle perturbation on optical
flow during the computation of upper bounds, we use the
discrepancy of logit values instead.

A.4. More examples of the optical flows extracted
from different videos

Apart from Figure 4 in Section 6, here we include more
examples of the optical flows extracted from another two
videos with classifications BalanceBeam (Figure 11) and
FrontCrawl (Figure 12).

A.5. Another example of the converging upper and
lower bounds

Apart from the HammerThrow example (Figures 6 and
7, Section 6), we include another example to illustrate the
convergence of the upper and lower bounds. Similarly,
Figure 13 exhibits five sampled frames (top row) from a
FloorGymnastics video and the optical flows extracted be-
tween them (2nd row). The descending upper bounds (red)
and the ascending lower bounds (blue) to approximate the
value of MSR are presented in Figure 14. Intuitively, af-
ter 20 iterations of the gradient-based algorithm, the upper
bound, i.e., minimum distance to an adversarial example, is
2100.45 based on the L2 distance metric. That is, manipula-
tions imposed on the flows exceeding this upper bound may
be unsafe. Figure 13 (3rd row) shows some of such unsafe
perturbations on each optical flow, which result in the mis-
classification of the video into FrontCrawl with confidence

Figure 12. Examples of the optical flows extracted from a
FrontCrawl video. Top row: four sampled frames from 0 s to 3 s
with original size 320⇥ 240⇥ 3. 2nd row: the optical flows (blue
arrows) extracted between the frames. 3rd row: one of optical
flow’s characteristics: magnitude. Bottom row: the other optical
flow characteristics: direction.

Figure 13. Examples of unsafe and safe perturbations on the op-
tical flows of a FloorGymnastics video. Top row: five sampled
frames from 0 s to 4 s. 2nd row: optical flows of the frames from
0 s to 5 s. 3rd row: unsafe perturbations on the flows correspond-
ing to the upper bound. Bottom row: safe perturbations on the
flows corresponding to the lower bound.

97.04%. As for the lower bound, we observe that, after
1500 iterations of the admissible A* algorithm, the lower
bound reaches 146.61. That is, manipulations within this
L

2 norm ball are absolutely safe. Some of such safe pertur-
bations can be found in the bottom row of Figure 13.



Figure 14. Converging bounds of the maximum safe radius of the
FloorGymnastics video with respect to manipulations on extracted
optical flows. The red line denotes the decreasing upper bound
from the gradient-based algorithm, and the blue line denotes the
increasing lower bound from admissible A*.


