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1. Technical Details

1.1. Differentiable rendering layer

As noted in the Section 3.3 in the main paper, the reprojec-
tion function Π warps the canonical image J to generate the
actual image I. In CNNs, image warping is usually regarded
as a simple operation that can be implemented efficiently
using a bilinear resampling layer [3]. However, this is true
only if we can easily send pixels (u′, v′) in the warped image
I back to pixels (u, v) in the source image J, a process also
known as backward warping. Unfortunately, in our case the
function ηd,w obtained by Eq. (6) in the paper sends pixels
in the opposite way.

Implementing a forward warping layer is surprisingly
delicate. One way of approaching the problem is to regard
this task as a special case of rendering a textured mesh.
The Neural Mesh Renderer (NMR) of [4] is a differentiable
renderer of this type. In our case, the mesh has one vertex per
pixel and each group of 2 × 2 adjacent pixels is tessellated
by two triangles. Empirically, we found the quality of the
texture gradients of NMR to be poor in this case, likely
caused by high frequency content in the texture image J.

We solve the problem as follows. First, we use NMR
to warp only the depth map d, obtaining a version d̄ of
the depth map as seen from the input viewpoint. This has
two advantages: backpropagation through NMR is faster
and secondly, the gradients are more stable, probably also
due to the comparatively smooth nature of the depth map d
compared to the texture image J. Given the depth map d̄, we
then use the inverse of Eq. (6) in the paper to find the warp
field from the observed viewpoint to the canonical viewpoint,
and bilinearly resample the canonical image J to obtain the
reconstruction.

1.2. Training details

We report the training details including all hyper-
parameter settings in Table 1, and detailed network architec-
tures in Tables 2 to 4. We use standard encoder networks
for both viewpoint and lighting predictions, and encoder-

decoder networks for depth, albedo and confidence predic-
tions. In order to mitigate checkerboard artifacts [6] in the
predicted depth and albedo, we add a convolution layer after
each deconvolution layer and replace the last deconvolotion
layer with nearest-neighbor upsampling, followed by 3 con-
volution layers. Abbreviations of the operators are defined
as follows:

• Conv(cin, cout, k, s, p): convolution with cin input
channels, cout output channels, kernel size k, stride
s and padding p.

• Deconv(cin, cout, k, s, p): deconvolution [9] with cin
input channels, cout output channels, kernel size k,
stride s and padding p.

• Upsample(s): nearest-neighbor upsampling with a
scale factor of s.

• GN(n): group normalization [8] with n groups.

• LReLU(α): leaky ReLU [5] with a negative slope of
α.

2. Qualitative Results
We provide more qualitative results in the following and

3D animations in the supplementary video1. Fig. 1 reports
the qualitative results of the ablated models in Table 3 of the
main paper. Fig. 3 shows reconstruction results on human
faces from CelebA and 3DFAW. We also show reconstruc-
tion results on face paintings and drawings collected from [2]
and the Internet in Figs. 4 and 5. Figs. 6 to 8 show results on
real cat faces from [10, 7], abstract cats collected from the
Internet and synthetic cars rendered using ShapeNet.

Re-lighting. Since our model predicts the intrinsic compo-
nents of an image, separating the albedo and illumination,
we can easily re-light the objects with different lighting con-
ditions. In Fig. 2, we demonstrate results of the intrinsic
decomposition and the re-lit faces in the canonical view.

1https://www.youtube.com/watch?v=5rPJyrU-WE4
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Parameter Value/Range

Optimizer Adam
Learning rate 1× 10−4

Number of epochs 30
Batch size 64
Loss weight λf 0.5
Loss weight λp 1
Input image size 64× 64
Output image size 64× 64

Depth map (0.9, 1.1)
Albedo (0, 1)
Light coefficient ks (0, 1)
Light coefficient kd (0, 1)
Light direction lx, ly (−1, 1)
Viewpoint rotation w1:3 (−60◦, 60◦)
Viewpoint translation w4:6 (−0.1, 0.1)
Field of view (FOV) 10

Table 1: Training details and hyper-parameter settings.

Encoder Output size

Conv(3, 32, 4, 2, 1) + ReLU 32
Conv(32, 64, 4, 2, 1) + ReLU 16
Conv(64, 128, 4, 2, 1) + ReLU 8
Conv(128, 256, 4, 2, 1) + ReLU 4
Conv(256, 256, 4, 1, 0) + ReLU 1
Conv(256, cout, 1, 1, 0) + Tanh→ output 1

Table 2: Network architecture for viewpoint and lighting.
The output channel size cout is 6 for viewpoint, correspond-
ing to rotation angles w1:3 and translations w4:6 in x, y and
z axes, and 4 for lighting, corresponding to ks, kd, lx and ly .

Testing on videos. To further assess our model, we apply
the model trained on CelebA faces to VoxCeleb [1] videos
frame by frame and include the results in the supplementary
video. Our trained model works surprisingly well, producing
consistent, smooth reconstructions across different frames
and recovering the details of the facial motions accurately.
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Figure 1: Qualitative results of the ablated models.
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Figure 2: Re-lighting effects.
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Input Reconstruction

Figure 3: Reconstruction of human faces.
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Input Reconstruction

Figure 4: Reconstruction of face paintings.
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Input Reconstruction

Figure 5: Reconstruction of abstract faces.
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Input Reconstruction

Figure 6: Reconstruction of cat faces.
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Input Reconstruction

Figure 7: Reconstruction of abstract cats.

Input Reconstruction

Figure 8: Reconstruction of synthetic cars.
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