
Generating and Exploiting Probabilistic Monocular Depth Estimates: Supplementary Material
Zhihao Xia, Patrick Sullivan, Ayan Chakrabarti

A. Additional Results

We include additional example results of depth reconstruction for various applications in Figure 5.

Figure 5. Additional examples of depth reconstructions using our common model for various applications.

B. Discussion

MRF Model. Here we discuss and provide additional context for our formulation for p(Z|I) in (1). Our overall strategy

is to define potential functions in (2) that model the (conditional) joint distributions of depth values within a patch, and then

apply these distributions on overlapping patches to form the distribution in p(Z|I). This corresponds to an MRF where the

patches are the maximal-cliques. Note that this is not a pairwise MRF, since each potential is a joint function of all depths

within a patch. The distribution p(Z|I) is defined in (1) up to a proportionality constant: as is common in MRF models, this

constant is intractable to compute, but is typically not needed during inference (since it does not depend on Z). Note that the

potentials ψi(·) are not the marginals of the distribution p(Z|I), since they are defined on overlapping patches. It is also due

to this overlap that different patches (and thus all depth values) become dependent in p(Z|I) through their shared pixels.



h2
= h2

0 h2
= h2

0/2 h2
= h2

0/5 h2
= h2

0/10

Avg-ratio r 1.2× 10
2

2.4× 10
2

6.2× 10
2

1.3× 10
3

Table 5. Average ratio of dominant to non-dominant terms in the summationin patch-potentials, for different values of bandwidth h2.

This technique of factoring a larger distribution into smaller overlapping cliques is a classic technique. For example,

Zoran & Weiss [54] use a similar strategy for modeling image intensities for restoration tasks: using potentials defined as

log-likelihoods of a Gaussian mixture model (GMM) for individual patches, and applying such potentials on overlapping

patches. It is worth noting that in our approach (like also in [54]), the potential functions are defined to match the marginal

distributions of individual patches, even though they are then applied on overlapping patches (which, as mentioned above,

means they are not marginals of the global distribution). Other works attempt to learn potentials in a manner based on the

likelihood of the full distribution (e.g., [38]). However, this is significantly more expensive computationally, especially in our

setting where the potentials are derived using a C-VAE, motivating our use of this more approximate approach (as in [54]).

Dominant Term Approximation. To make our estimation method in Sec. 3.2 tractable, we approximate the summation of

terms from each sample in (3) with a max in (4), relying on the fact that PiZ is high-dimensional, and thus the maximum

term in the summation will dominate the other terms. This is a common approximation for sums of exponentials of this form

in high-dimensional spaces (e.g., [54] also uses this for a GMM).

We evaluate this in the context of samples generated by our C-VAE, by measuring the ratio between the dominant term to

other terms in the summation, computed with respect to ground-truth depth, and averaged over all patches and non-dominant

samples on multiple scenes in a validation set:

r = Avg

[

max
xi∈Si

(

exp

(

−
‖PiZGT − xi‖

2

2h2

))/

exp

(

−
‖PiZGT − x̃i‖

2

2h2

)]

, x̃i 6= argmax
xi

exp

(

−
‖PiZGT − xi‖

2

2h2

)

.

(14)

Note that values of these ratios will depend on the choice of the bandwidth hyper-parameter h2 (even though we did not

need to explicit set this value during inference, as it was absorbed in other parameters, such as the external cost C(·)). As

reference, we first compute the average per-pixel variance h20 in depth values across sample sets Si for different patches.

Since, h2 is set to be lower than h0 to allow the summation to express multi-modality, we consider different possible values

of h2 as different fractions of h20, and report corresponding average ratios (14) in Table 5. We see that the dominant term is

typically two to three orders of magnitude larger than other terms included in the summation.

C. Additional Details

C.1. DORN Usage and Resolution

Our conditional VAE leverages a pre-trained feature extractor derived from a state-of-the-art monocular depth network.

Specifically, we take the pre-trained DORN model [9], remove its last two convolutional layers, and use it as our feature

extractor. The DORN network works at a lower resolution of 257×353, compared to the original NYUv2 resolution of

640×480, for both its RGB input and depth output. Therefore, our feature extractor takes an RGB image as input after

resizing to the lower DORN resolution of 257×353. The output of the feature extractor layers is a 2560-dimensional feature

map with a spatial size of 33×45. Our VAE takes this feature map as input, and reasons about an output depth map at

the 257×353 DORN resolution. We consider overlapping 33×33 patches at stride 4 also at the lower DORN resolution of

257×353, giving us a total of 57×81 patches, each of size 33×33.

Thus, our distributional output corresponds to the lower DORN [9] resolution of 257×353 for the depth map. However,

all error metrics in the paper are computed (inside the valid crop) at full resolution. To do so, we resize our method’s outputs

to 640×480 (by simple bilinear interpolation). Moreover, in all applications with additional inputs, these are also provided at

the original higher resolution. For user annotations, erroneous regions are marked as 50×50 windows at the full resolution,

and we map the locations of these windows to the lower resolution to construct our masks WM . Similarly, for depth from

sparse measurements, F corresponds to sparse measurements of depth at the full-resolution, and our global cost CG(·) is

defined in terms of a full-resolution depth map (we scale our depth map to the full resolution, apply gradients, and scale

the updated depth map back). For depth un-cropping, we again provide depth measurements at the full resolution, and scale

these to the DORN resolution to construct our measurement and mask vectors F and W. Thus, all inputs and all evaluation

metrics are based on the standard benchmark resolution.



No. Layer Output Shape

0 features from feature extractor 1×33×45×2560

1 bilinear upsample 1×65×89×2560

2 conv 1×1 1×65×89×1024

3 conv 1×1 1×65×89×512

4 conv 3×3 dilation=2 1×61×85×512

5 conv 3×3 dilation=2 1×57×81×256

6 conv 1×1 1×57×81×256

7 conv 1×1 1×57×81×256

8 conv 1×1 (no ReLU) 1×57×81×256

9 reshape and split
(57*81)×1×1×128 Mean

(57*81)×1×1×128 log-Sigma

Prior-net

No. Layer Output Shape

0a features from feature extractor 1×33×45×2560

1a bilinear upsample 1×65×89×2560

2a conv 1×1 1×65×89×1024

3a conv 1×1 1×65×89×512

4a conv 3×3 dilation=2 1×61×85×512

5a conv 3×3 dilation=2 1×57×81×256

6a reshape (57*81)×1×1×256

0b sample from latent distribution (57*81)×1×1×128

0 concat: 6a and 0b (57*81)×1×1×384

1 conv_transpose 3×3 (57*81)×3×3×256

2 conv_transpose 3×3 (57*81)×5×5×128

3 conv_transpose 3×3 (57*81)×7×7×64

4 bilinear upsample (57*81)×13×13×64

5 conv_transpose 3×3 (57*81)×15×15×32

6 conv_transpose 3×3 (57*81)×17×17×16

7 bilinear upsample (57*81)×33×33×16

8 conv 1×1 + tanh (57*81)×33×33×1

9 reshape 57 × 81 × [33 × 33]

Encoder-decoder

No. Layer Output Shape

0.a features from feature extractor 1×33×45×2560

1.a bilinear upsample 1×65×89×2560

2.a conv 3×3 dilation=2 1×61×85×1024

3.a conv 3×3 dilation=2 1×57×81×256

0.b GT depth patches 57 × 81 × [33 × 33]
1.b reshape (57*81)×33×33×1

2.b conv 3×3 stride=2 (57*81)×16×16×8

3.b conv 2×2 stride=2 (57*81)×8×8×16

4.b conv 2×2 stride=2 (57*81)×4×4×32

5.b conv 2×2 stride=2 (57*81)×2×2×64

6.b reshape (57*81)×1×1×256

7.b reshape 1×57×81×256

0 concat: 3.a and 7.b 1×57×81×512

1 conv 1×1 1×57×81×1024

2 conv 1×1 1×57×81×512

3 conv 1×1 1×57×81×256

4 conv 1×1 (no ReLU) 1×57×81×256

5 reshape and split
(57*81)×1×1×128 Mean

(57*81)×1×1×128 log-Sigma

Posterior-net

Table 6. Conditional VAE architecture. We show architecture details of the three different sub-networks in our VAE, with the posterior-net

used only during training. Valid padding is used everywhere. Every convolutional layer is followed by a ReLU, unless otherwise specified.

The output of the encoder-decoder network has a tanh activation, followed by scaling to map to the depth range of the NYUv2 dataset.

C.2. Conditional VAE Architecture

Our conditional VAE treats the output of the DORN feature extractor—with a spatial resolution of 33×45 and 2560 feature

channels—as an encoding of the input image. Closely following the formulation of [18], this VAE has the following three

sub-networks:

1. Prior-net: Given the input image feature encoding, this network produces the mean and variance vectors for each of the

57×81 overlapping patches. These vectors represent the parameters of diagonal Gaussian distributions over the latent

space of the corresponding patches. The latent space, and the per-patch mean and variance vectors, are 128-dimensional.

2. Encoder-decoder: This network takes as input both the image feature encoding, and per-patch latent vectors sampled

as-per the distributions produced by the prior-net. The encoder produces a 256-dimensional feature vector for each patch

(i.e., at a spatial resolution of 57×81), which is then concatenated with the patch’s corresponding sampled latent vector.

This concatenated vector is then decoded to output 33×33 depth value estimates for each patch—i.e., the output of the

decoder is 57×81×[33×33]. Note that the decoder path is independent for each patch to ensure independent sampling.

3. Posterior-net: This network is used only during training, and takes the image feature encoding and ground-truth patch

depths as input. It uses two streams to first encode each of these to 256-dimensional per-patch feature vectors, con-

catenates them, and uses a series of 1×1 convolution layers to predict mean and variance vectors—the “posterior”

equivalents of the prior-net’s outputs.

The detailed architectures of these three networks are included in Table 6—with convolution and reshape operations allow-

ing us to run the network efficiently in a fully-convolutional way, while still producing independent samples for overlapping

patches. We train these three networks in a similar way as [18], using a weighted combination of two losses: (1) an L1 loss

between ground-truth patch depth and the output of the encoder-decoder network; and (2) a KL-divergence loss between the



Application Un-cropping Up-sampling
Sparse

User Sel.
User Sel.

Meaus. w/ Annot.

Time 1.0 s 0.4 s 0.7 s 0.8 s 2.2 s

Table 7. Optimization running time for different applications (does not include sample generation time). Note that for user-guidance, the

reported time is for each generated mode Z
m.

No. Layer Output Shape

0 features from feature extractor 1×33×45×2560

1 resize 1×65×89×2560

2 conv 1×1 1×65×89×1024

3 conv 1×1 1×65×89×512

4 conv 3×3 dilation=2 1×61×85×512

5 conv 3×3 dilation=2 1×57×81×256

6 reshape (57*81)×1×1×256

dropout as noise

7 conv 1×1 (57*81)×1×1×256

dropout as noise

8 conv 1×1 (57*81)×1×1×256

dropout as noise

9 conv 1×1 (57*81)×1×1×256

dropout as noise

10 conv_transpose 3×3 (57*81)×3×3×256

11 conv_transpose 3×3 (57*81)×5×5×128

12 conv_transpose 3×3 (57*81)×7×7×64

13 resize (57*81)×13×13×64

14 conv_transpose 3×3 (57*81)×15×15×32

15 conv_transpose 3×3 (57*81)×17×17×16

16 resize (57*81)×33×33×16

17 conv 1×1 + tanh (57*81)×33×33×1

18 reshape 57 × 81 × [33 × 33]

Generator

No. Layer Output Shape

0.a features from feature extractor 1×33×45×2560

1.a resize 1×65×89×2560

2.a conv 3×3 dilation=2 1×61×85×1024

3.a conv 3×3 dilation=2 1×57×81×256

4.a reshape (57*81)×1×1×256

0.b true/fake depth patches 57 × 81 × [33 × 33]
1.b reshape (57*81)×33×33×1

2.b conv 3×3 stride=2 (57*81)×16×16×8

3.b conv 2×2 stride=2 (57*81)×8×8×16

4.b conv 2×2 stride=2 (57*81)×4×4×32

5.b conv 2×2 stride=2 (57*81)×2×2×64

6.b reshape (57*81)×1×1×256

0 concat: 4.a and 6.b (57*81)×1×1×512

1 conv 1×1 (57*81)×1×1×1024

2 conv 1×1 (57*81)×1×1×512

3 conv 1×1 (57*81)×1×1×256

4 conv 1×1 + sigmoid (57*81)×1×1×1

Discriminator

Table 8. Conditional GAN architecture. We show architectures for the generator and discriminator for the GAN used in our ablation study,

which follows a similar overall design as our VAE. For all dropout layers, we use probability 0.5. Every convolutional layer is followed by

a ReLU, unless otherwise specified, and valid padding is used everywhere.

distributions produced by the prior-net and posterior-net; with a weight of 1e− 4 for the latter. After training, we discard the

posterior-net. Given an image, we run the prior-net and the encoder-half of the encoder-decoder network, and then run the

decoder-half multiple (100) times with different samples from the latent distributions to produce multiple samples of depth

estimates for each patch.

C.3. Inference Hyperparameter Selection

For applications with a per-patch cost Ci(·)—i.e., user-guidance and depth un-cropping—the value of λ is chosen based

on a small validation set, as λ = 10 for user-guidance, and 150 for un-cropping. Moreover, for user guidance, we find that

slowly increasing the value of λ from 5 to its final value of 10 during optimization leads to convergence to better solutions.

For depth completion from sparse (both random and regularly spaced) measurements, we set the value of the parameters for

gradient-based updates for the global cost—step-size γ (in range [0.1, 1.0]) and number of steps (in range [1, 10])—based on

a validation set as well.

C.4. Running Time

Our method works by first generating multiple (100) samples for each overlapping patch, and then carrying out inference

using these samples for different applications. In particular, for “MAP” estimation to compute depth estimates with additional

information, this involves running our iterative optimization method. We report these running time (on a 1080Ti GPU) for

this optimization for different applications in Table 7—these times vary both because of variance in time taken per-iteration,

and number of iterations needed for convergence.

C.5. Ablation: Conditional GAN architecture

Our conditional GAN architecture features generator and discriminator networks, with similar architecture design choices

to the VAE—the generator has a similar architecture the encoder-decoder network in the VAE, and the discriminator to the



Setting Method
lower is better higher is better

rms m-rms rel δ1 δ2 δ3

20 Ma [34] - 0.351 0.078 92.8 98.4 99.6

Ours 0.363 0.303 0.070 94.0 98.7 99.7

50 Ma [34] - 0.281 0.059 95.5 99.0 99.7

Ours 0.309 0.257 0.053 95.8 99.2 99.8

200 Ma [34] - 0.230 0.044 97.1 99.4 99.8

Ours 0.237 0.196 0.037 97.6 99.6 99.9

Table 9. Performance on depth estimation from arbitrary sparse measurements, using the same evaluation setting as [34] (half-resolution,

evaluated on a center-crop).

posterior-net. The generator uses dropout as the noise-source to enable sampling in different runs of the generator—and

ensure that per-patch estimates are independent by ensuring that different patches are based on different instantiations of

dropout noise values. The architecture is detailed in Table 8.

C.6. Half­resolution Comparison to Ma et al. [34].

Note that [34] evaluate their methods by reporting errors on a centered crop of half-resolution depth-maps, and also derive

their input sparse measurements at this half-resolution. In contrast, our results in Table 1 in the paper represent the official

benchmark metrics (in the valid crop at full resolution) for consistency to other evaluations—in our paper and elsewhere. For

a more direct comparison to [34], we also evaluated our method by replicating their setting. Specifically, to provide input

sparse measurements, we first down-sample the ground-truth depth map and randomly sample depth values from this down-

sampled map. We then provide these as inputs to our method (which resizes these back to the full resolution to compute the

global cost CG(·)). Then, we take the full-resolution depth map estimates produced by our method, down-sample them to

half-resolution, and compute error metrics on the same centered crop as [34]. We report these results in Table 9, and find they

are similar to standard evaluation in Table 1 in the paper.


