
Supplementary Material
Structure-Guided Ranking Loss for Single Image Depth Prediction

1. Sky mask generation for RGB-D data postprocessing
As the sky region often has erroneous disparity predictions from the optical flow algorithm, we use a sky segmentation

model to detect sky regions and set the disparity to the minimum disparity value (farthest away) on a map.
We use two models: 1) a scene parsing model from [16] and 2) a sky segmentation model. The scene parsing model can

more robustly detect sky regions if there is any, and the sky segmentation can provide accurate sky region segmentation. The
sky segmentation model adopts a densenet [4] backbone and a two-branch structure described in [15]. The model is trained
on sky regions from COCO-stuff plus an internally collected dataset of 2K high-res sky images.

For a given image to be post-processed, we run the scene parsing model and the sky segmentation model to get two sky
region masks. If their IOU is above a threshold of 0.75, we will use the output from the sky segmentation model as the final
sky mask of the image. Otherwise, we choose the output from the scene parsing model. Example sky segmentation results
are shown in Fig. 1.

Figure 1. Examples of our sky masks. The sky regions are shown by green masks.

2. Qualitative results of monodepth models
As shown in Fig. 2, Fig. 3, and Fig.4, we note that our method has the most accurate depth discontinuities when compared

to related work.
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Figure 2. Additional qualitative results of single image depth prediction methods applied to different datasets.
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Figure 3. Additional qualitative results of single image depth prediction methods applied to different datasets.
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Figure 4. Additional qualitative results of single image depth prediction methods applied to different datasets.



3. Quantitative comparisons of monodepth models
In addition to ordinal error (see Table.1 in our main paper), we also report metric depth error scores (i.e., rel and δ > 1.25)

in Table 1. Although we use less training data, our full model still achieves competitive results under these metrics. To
demonstrate the effectiveness of our loss, we also report the scores of a baseline model with the affine-invariant loss [6]. One
can observe that the model trained with our loss performs better under this setting.

Ibims TUM Sintel NYUDv2 KITTI DIODE
Methods Training Datasets δ > 1.25 rel δ > 1.25 rel δ > 1.25 rel δ > 1.25 rel δ > 1.25 rel δ > 1.25 rel Avg. Ranking
DIW [2] DIW 39.30 0.232 37.42 0.270 56.21 0.405 36.85 0.210 51.45 0.306 42.25 0.307 10.00
DL [13] ID 34.75 0.211 25.26 0.205 48.20 0.407 32.71 0.196 45.32 0.271 40.04 0.311 8.50
RW [14] RW 30.46 0.220 25.16 0.200 45.46 0.410 28.86 0.178 31.32 0.207 38.27 0.320 6.92
MD [8] MD 31.31 0.200 26.86 0.226 53.56 0.422 29.69 0.182 36.32 0.238 39.03 0.323 8.83
YT3D [3] RW+DIW+YT3D 26.02 0.174 26.36 0.230 47.50 0.329 23.13 0.153 30.20 0.185 36.48 0.279 5.25
MC [7] MC 21.53 0.152 26.06 0.204 44.85 0.476 23.70 0.159 48.02 0.280 39.29 0.337 6.58
MiDaS [6] RW+MD+MV 21.51 0.153 20.44 0.201 39.73 0.341 21.38 0.148 26.84 0.175 35.12 0.296 1.92
Ours AI HRWSI 27.14 0.180 22.12 0.195 46.91 0.396 25.41 0.163 29.86 0.192 36.49 0.293 4.33
Ours† RW 29.16 0.199 23.58 0.209 44.46 0.414 27.90 0.174 34.69 0.220 37.96 0.316 6.50
Ours R HRWSI 25.46 0.192 21.24 0.197 47.93 0.450 25.71 0.165 28.45 0.192 36.40 0.341 5.58
Ours HRWSI 23.09 0.170 19.41 0.194 44.84 0.402 23.50 0.157 25.40 0.179 34.44 0.301 2.42

Table 1. Zero-shot cross-dataset evaluation. We use δ > 1.25 and rel as our additional metrics for model evaluation. The lowest error is
boldfaced and the second lowest is underlined.

4. Qualitative results of different sampling strategies

RGB Ours AI Ours R Ours E Ours ER Ours ERI Ours ERM Ours ERIM GT
Figure 5. Additional qualitative evaluation of different sampling strategies and the affine-invariant loss. Best viewed zoomed in on-screen.
Our full model trained with a combination of the structure-guide ranking loss and the multi-scale gradient matching loss generates a
globally consistent depth map with sharp depth boundaries and detailed depth structures (e.g., the basket, chair, and head).
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