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One Man’s Trash is Another Man’s Treasure:
Resisting Adversarial Examples by Adversarial Examples

A. Additional Experiments and Setups
A.1. Network Structure of fb

Following the guidelines presented at the end of Sec. 3.4,
we choose to use a VGG-style small network in fb for defin-
ing our adversarial transformation. This network is sim-
ple enough to enable fast adversarial transformation, while
producing the expectation over transformation image (i.e.,
Eg̃∼T g̃(x)) drastically different from the input image. The
structure of fb for experiments on CIFAR-10 dataset is de-
scribed in Table 4.

On Tiny ImageNet dataset, the network structure of fb
remains largely the same except two minor changes to ac-
commodate the different resolution of the images in Tiny
ImageNet. Namely, the changes are at the 12nd layer (which
has a dimension 2048) and the 15th layer (which has a di-
mension 200).

Layer Module Output Size
1 Input 3×32×32
2 Conv(k=3), BN, ReLU 64×32×32
3 MaxPool 64×16×16
4 Conv(k=3), BN, ReLU 128×16×16
5 MaxPool 128×8×8
6 Conv(k=3), BN, ReLU 128×8×8
7 Conv(k=3), BN, ReLU 128×8×8
8 MaxPool 128×4×4
9 Conv(k=3), BN, ReLU 128×4×4
10 Conv(k=3), BN, ReLU 128×4×4
11 MaxPool 128×2×2
12 Flatten 512
13 Linear, ReLU, Dropout 512
14 Linear, ReLU, Dropout 512
15 Linear (output) 10

Table 4. Network structure for fb. Here BN denotes batchnorm
operation, and Conv(k=3) denotes convolutional layer with a kernel
size of 3.

A.2. Reparameterization Attack

As discussed in Sec. 3.3 and 4.1, to launch the reparam-
eterization attack, we need to find a forward function h(·)
that approximate our adversarial transformation process. To
this end, we attempted to train a Fully Convlutional Net-
work (FCN) [24], denoted as h(x;θ), through the following
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Figure 8. Training Loss and validation loss in reparameterization
attack.

optimization,

θ = arg min
θ

Ex∈X ,δ∈∆ ‖h(x+ δ;θ)− g̃δ(x)‖2 , (6)

where X is the given dataset, δ is the initial input perturba-
tion in the L∞ ball of size ∆ (as described in Sec. 3.3), g̃δ(·)
is the deterministic version of our adversarial transformation
g(·): it starts the adversarial search iteration (3) from x+ δ
by using a sampled δ.

However, after optimizing (6), we found that although
the FCN model can reach a relatively low training error, the
error on test set remains high, as depicted in Fig. 8. This
suggests that the FCN model is not able to learn a h(x;θ)
that generalizes well. The inability to generalize is not a
surprise: if h(x;θ) could generalize well, we would have a
direct way of crafting adversarial examples; and PGD-type
iterations would not be needed—which are all unlikely.

Indeed, when we use the trained h(x,θ) to launch a repa-
rameterization attack to our model, the attack hardly suc-
ceeds. Under this attack (on CIFAR-10), the robust accuracy
of our defense is 81.1%, even better than the robust accuracy
under BPDA-I attack (80.2%). In fact, this accuracy nearly
reaches its upper bound, the standard accuracy (i.e., 82.9%),
as reported in Table 3 of the main text.

A.3. BPDA Attack Details and Additional Results

As described in Sec. 4.1, we evaluate our defense model
under the BPDA attack. To launch BPDA attack, we need
to replace the non-differentiable operators in our adversarial
transformation with their smooth approximations. In particu-
lar, the non-differentiable operators in the adversarial update



Robust Acc. (transfer attack)
Defense Model Iterations Standard Acc. N = 1 N = 2 N = 3

N = 3 81.7% 69.7% 66.4% 79.5%
N = 4 82.4% 75.6% 78.7% 79.9%
N = 5 83.1% 81.6% 80.7% 81.7%
N = 10 82.7% 81.4% 81.2% 81.0%
N = 13 82.9% 80.9% 81.1% 81.3%

Table 5. Transfer attack based on BPDA. Each row shows the standard and robust accuracies of our defense model with a different number
of LL-PGD steps in its adversarial transformation g(·). The number of LL-PGD steps in our defense model is shown in the left most column.
The right most three columns correspond to the models with smaller numbers of LL-PGD steps. We use these models to craft adversarial
examples to transfer attack our defense model. It shows that even when the number N of LL-PGD steps in our defense model is moderately
large (N ≥ 5), the transfer attacks become ineffective. In all the evaluations, the perturbation size ∆ in our defense model is set as ∆ = 0.2.

rule (3) (in the main text) are the sgn(·) function,

sgn(x) =


1 if x > 0,

0, if x = 0,

−1 if x < 0.

(7)

and the L∞ projection operator,

Πx′∈∆x(x) =


x if |x| ≤ ∆,

−∆ if x < −∆,

∆ if x > ∆.

(8)

In Sec. 4.1, we experimented with two different smooth
approximations of the sgn(·) function, namely, the soft sign
function x

1+|x| and tanh function ex−e−x

ex+e−x , and the projection
operator is replaced by directly approximating its derivative
using (5).

Also discussed in Sec. 4.1 is an additional transfer attack:
First, we craft adversarial examples by setting the number N
of LL-PGD steps to be a small value. This is motivated by
the observation that, as shown in Fig. 5, BPDA attack is able
to find effective adversarial examples when N is small. We
then use the resulting adversarial examples to transfer attack
our defense model, which uses a larger number of LL-PGD
steps in the adversarial transformation (in both training and
inference). As summarized in Table 5, our experiment shows
that this attack remains ineffective to our defense.

A.4. Black-box Transfer Attack

Papernot et al. [30] shows that adversarial examples
crafted on one model can effectively transfer to attack an-
other unknown model trained on the same dataset. This
phenomenon has been utilized to form a very practical at-
tack method under black-box threat model, because it does
not require to query the target model. We also evaluate our
defense against the black-box transfer attack method, and
the results are shown in Table 7. We use FGSM and PGD to
craft the adversarial examples on two ResNet-18 networks.
One is trained using the standard method (Vanilla), another

Method Astd Rrob Attack Method
No defense 58.2% 0.0% PGD
Madry et al. [26] 42.7% 17.3% PGD
Zhang et al. [54] 40.6% 17.7% PGD
Mao et al. [27] 40.9% 17.5% PGD
Ours (Under BPDA) 48.8% 47.9% BPDA
Ours 48.8% 40.2% Transfer

Table 6. Comparisons on Tiny ImageNet. The layout of this
table is similar to Table 3 in the main text (i.e., the comparisons on
CIFAR-10). The perturbation range of all adversarial examples is
∆ = 0.031. The last column indicates the most efficient attacking
method that produces the worst robustness. The second last row
indicates the worst-case robustness of our method under all BPDA-
type attacks, while the last row indicates our worst-case robustness
under all attacks.

one is trained using adversarial training (Madry et al.). We
use ∆ = 0.2 in our defense. We found that Madry et al.
produce better transferability compare to a regular model,
but neither of them significantly reduces the accuracy of our
defense. We hypothesis this is because our adversarial trans-
formation with a large perturbation (recall Fig. 4) forces the
model fa to learn a decision boundary significantly different
from either vanilla or Madry’s model, and it is well known
that the adversarial transferability between two significantly
different models are low.

Source Model Astd FGSM PGD
ResNet-18 (Vanilla) 82.9% 80.9% 79.2%
ResNet-18 (Madry et al.) 82.9% 80.6% 73.4%

Table 7. Black-box transfer attack.

A.5. Evaluation on Tiny ImageNet

We also evaluate our defense model on Tiny ImageNet
dataset consisting of 64px×64px RGB images. These im-
ages fall into 200 classes, each has 500 images for training
and 50 images for testing. Following the evaluations setups
in prior works, the adversarial examples used in the attacks
have a maximum perturbation size (in L∞ norm) of 0.031



for pixel values ranging in [0,1]. We use ResNet18 as our
classification network (in fa) and the network structure of
fb is described in Appendix A.1.

We compare our method with the state-of-the-art
method [27] evaluated on Tiny ImageNet and the methods
based on adversarial training [26, 54]. For all those methods,
we use the implementation code provided in their original pa-
pers. When comparing with these methods, we use the same
training protocol: the models are optimized use SGD (learn-
ing rate=0.1, momentum=0.9) and trained for 80 epochs.

As shown in Table 6, our method demonstrates signifi-
cantly stronger robustness in comparison to previous meth-
ods. Our worst-case robust accuracy is 40.2%. In contrast,
previous methods have robust accuracies around 18%. Re-
markably, the standard accuracy of our method also outper-
forms previous methods.

A.6. Expectation over Transformation Images

Figure 4 in the main text shows a few examples of
the difference between an input image x and its expec-
tation over transformation, that is, the image of normal-
ized x − Eg̃∼T g̃(x). We now provide more samples of
x − Eg̃∼T g̃(x) images on both CIFAR-10 and Tiny Ima-
geNet (see Fig. 9).

Discussion. In [45], Tsipras et al. presented an interest-
ing finding. They visualized the loss gradient with respect
to input pixels, and found that if the model is adversarially
trained, such a loss gradient is significantly human-aligned—
they align well with perceptually relevant features (e.g., see
Figure 2 in their paper). But if the model is not adversarially
trained, the loss gradient appears like random noise. Here,
we discover that the normalized difference x− Eg̃∼T g̃(x)
is also human-aligned, exhibiting perceptually relevant fea-
tures, as shown in Fig. 10. In contrast to the discovery
in [45], we found that x − Eg̃∼T g̃(x) is always human-
aligned. Even if the model fb is not adversarially trained, the
difference image x− Eg̃∼T g̃(x) still exhibits perceptually
relevant features, as along as they are trained with sufficient
number of epochs (see Fig. 9). If the model fb is adversar-
ially trained, those perceptually relevant features become
more noticeable.

B. Discussion on Computational Performance
Our defense demands lower training cost than the stan-

dard adversarial training. For example, on CIFAR-10 dataset,
our method takes 82 minutes to train a ResNet18 model for
80 epochs. This time cost is close to the standard (non-
adversarial) training, which takes 56 minutes for the same
setting. In contrast, the standard adversarial training takes
460 minutes for the same number of epochs and the same
network structure. Notice that the lower training cost in our
method is obtained without sacrificing its robustness perfor-
mance. In fact, as shown in Table 3 in the main text and

Table 6 here, our defense offers much stronger robustness.
The inference cost of our defense is more expensive than

adversarially trained models, because the input image x dur-
ing the inference also needs to be transformed by g(·). In
our experiments, our defense takes 17 seconds to predict the
labels of 10000 images in CIFAR-10, while the adversarially
trained model and the standard model (without adversarial
training) both take 4 seconds. This is the cost we have to pay
in exchange for stronger robustness. We argue that this is
worthy cost to pay because in comparison to network train-
ing cost, the inference cost is negligible. In fact, almost all
adversarial defense methods that rely on input transforma-
tion [14, 39, 33] have a performance overhead at inference
time. For example, PixelDefend [39] projects the input to
a pre-trained PixelCNN-represented manifold through 100
steps of L-BFGS iterations. Their transformation is about
10× slower than ours even when our method uses the same
network structure in fb as their PixelCNN.
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Figure 9. Here we show supplementary examples similar to those in Fig. 4 in the main text. The top four images are the results on CIFAR-10,
while the bottom four images are those on Tiny ImageNet. The first column shows the input image x in each example. The other columns
show the images generated by adversarial transformations with the fb models that are untrained, trained with an increasing number of epochs,
and adversarially trained, as labeled on the top line. Each of those images is a visualization of the normalized difference x− Eg̃∼T g̃(x),
where the expectation is estimated using 5000 samples. It is evident that as the number of training epochs increases, the expectation over
transformation Eg̃∼T g̃(x) drifts further away from x, and the adversarially trained fb model produces an even larger difference.
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Figure 10. Here we visualize the normalized difference between an input image (shown in column (a)) and its expectation over transformation
image Eg̃∼T g̃(x) in our defence model. The top three examples are from CIFAR-10, and the bottom three are from Tiny ImageNet. Column
(b) shows the results using fb models with standard training, while column (c) are results with adversarial training. The Expectation over
transformation in each example is estimated using an increasing number of samples. The ten sub-images (from left to right, top to bottom) in
each group of column (b) and (c) are results in which the expectations over transformation are estimated using 1, 10, 50, 100, 200, 500,
1000, 2000, 5000, 10000 samples of g̃(·), respectively.


