A. Experiments
A.1l. Architecture Details

The architecture specifications of EfficientNet-L2 are
listed in Table 7. We also list EfficientNet-B7 as a refer-
ence. Scaling width and resolution by c leads to an increase
factor of ¢? in training time and scaling depth by ¢ leads to
an increase factor of c. The training time of EfficientNet-L2
is around 5 times the training time of EfficientNet-B7.

Architecture Name ‘ w d Train Res.  TestRes.  # Params
EfficientNet-B7 20 3.1 600 600 66M
EfficientNet-L2 43 53 475 800 480M

Table 7: Architecture specifications for EfficientNets used
in the paper. The width w and depth d are the scaling factors
that need to be contextualized in EfficientNet [82]. Train
Res. and Test Res. denote training and testing resolutions
respectively.

A.2. Details of Iterative Training

Here, we show the detailed effects of iterative training.
As mentioned in Section 3.1, we first train an EfficientNet-
B7 model on labeled data and then use it as the teacher to
train an EfficientNet-L2 student model. Then, we iterate
this process by putting back the new student model as the
teacher model.

As shown in Table 8, the model performance improves
to 87.6% in the first iteration and then to 88.1% in the sec-
ond iteration with the same hyperparameters (except using a
teacher model with better performance). These results indi-
cate that iterative training is effective in producing increas-
ingly better models. For the last iteration, we make use of a
larger ratio between unlabeled batch size and labeled batch
size to boost the final performance to 88.4%.

Iteration Model Batch Size Ratio ‘ Top-1 Acc.
1 EfficientNet-L2 14:1 87.6%
2 EfficientNet-L2 14:1 88.1%
3 EfficientNet-L2 28:1 88.4%

Table 8: Iterative training improves the accuracy, where
batch size ratio denotes the ratio between unlabeled data
and labeled data.

A.3. Ablation Studies

We also study the importance of various design choices
of NoisyStudent, hopefully offering a practical guide for
readers. With this purpose, we conduct 8 ablation studies.
The findings are summarized as follows:

e Finding #1: Using a large teacher model with better
performance leads to better results.

e Finding #2: A large amount of unlabeled data is nec-
essary for better performance.

e Finding #3: Soft pseudo labels work better than hard
pseudo labels for out-of-domain data in certain cases.

e Finding #4: A large student model is important to en-
able the student to learn a more powerful model.

e Finding #5: Data balancing is useful for small mod-
els.

e Finding #6: Joint training on labeled data and unla-
beled data outperforms the pipeline that first pretrains
with unlabeled data and then finetunes on labeled data.

e Finding #7: Using a large ratio between unlabeled
batch size and labeled batch size enables models to
train longer on unlabeled data to achieve a higher ac-
curacy.

e Finding #8: Training the student from scratch is
sometimes better than initializing the student with the
teacher and the student initialized with the teacher still
requires a large number of training epochs to perform
well.

Since iterative training results in longer training time, we
conduct ablation without it. To further save training time,
we reduce the training epochs for small models from 700
to 350, starting from Study #4. We also set the unlabeled
batch size to be the same as the labeled batch size for mod-
els smaller than EfficientNet-B7 starting from Study #2.

Study #1: Teacher Model’s Capacity. Here, we study
if using a larger and better teacher model would lead to
better results. We use our best model NoisyStudent with
EfficientNet-L2, that achieves a top-1 accuracy of 88.4%, to
teach student models with sizes ranging from EfficientNet-
BO to EfficientNet-B7. We use the standard augmentation
instead of RandAugment on unlabeled data in this experi-
ment to give the student model more capacity. This setting
is in principle similar to distillation on unlabeled data.

The comparison is shown in Table 9. Using NoisyStu-
dent (EfficientNet-L2) as the teacher leads to another 0.7%
to 1.6% improvement on top of the improved results by
using the same model as the teacher. For example, we
can train a medium-sized model EfficientNet-B4, which has
fewer parameters than ResNet-50, to an accuracy of 85.3%.
Therefore, using a large teacher model with better perfor-
mance leads to better results.

Study #2: Unlabeled Data Size. Next, we conduct exper-
iments to understand the effects of using different amounts
of unlabeled data. We start with the 130M unlabeled im-
ages and gradually reduce the unlabeled set. We experiment



Data | 1/128 1/64 1/32  1/16 1/4 1

Model ‘ # Params | Top-1 Acc.  Top-5 Acc.
EfficientNet-BO 77.3% 93.4%
NoisyStudent (BO) 5.3M 78.1% 94.2%
NoisyStudent (B0, L.2) 78.8% 94.5%
EfficientNet-B1 79.2% 94.4%
NoisyStudent (B1) 7.8M 80.2% 95.2%
NoisyStudent (B1, L.2) 81.5% 95.8%
EfficientNet-B2 80.0% 94.9%
NoisyStudent (B2) 9.2M 81.1% 95.5%
NoisyStudent (B2, 1.2) 82.4% 96.3%
EfficientNet-B3 81.7% 95.7%
NoisyStudent (B3) 12M 82.5% 96.4%
NoisyStudent (B3, L2) 84.1% 96.9 %
EfficientNet-B4 83.2% 96.4%
NoisyStudent (B4) 19M 84.4% 97.0%
NoisyStudent (B4, L.2) 85.3% 97.5%
EfficientNet-B5 84.0% 96.8%
NoisyStudent (B5) 30M 85.0% 97.2%
NoisyStudent (B5, L2) 86.1% 97.8%
EfficientNet-B6 84.5% 97.0%
NoisyStudent (B6) 43M 85.6% 97.6%
NoisyStudent (B6, L2) 86.4% 97.9%
EfficientNet-B7 85.0% 97.2%
NoisyStudent (B7) 66M 85.9% 97.6%
NoisyStudent (B7, L2) 86.9% 98.1%

Table 9: Using our best model with 88.4% accuracy as
the teacher (denoted as NoisyStudent (X, L2)) leads to
more improvements than using the same model as the
teacher (denoted as NoisyStudent (X)). Models smaller than
EfficientNet-BS are trained for 700 epochs (better than
training for 350 epochs as used in Study #4 to Study #8).
Models other than EfficientNet-BO uses an unlabeled batch
size of three times the labeled batch size, while other abla-
tion studies set the unlabeled batch size to be the same as
labeled batch size by default for models smaller than B7.

with using %, é, 3%, %6, % of the whole data by uniformly
sampling images from the the unlabeled set for simplicity,
though taking images with highest confidence may lead to
better results. We use EfficientNet-B4 as both the teacher
and the student.

As can be seen from Table 10, the performance stays
similar when we reduce the data to 1—16 of the whole data,’
which amounts to 8.1M images after duplicating. The per-
formance drops when we further reduce it. Hence, using a

large amount of unlabeled data leads to better performance.

Study #3: Hard Pseudo-Label vs. Soft Pseudo-Label on
Out-of-domain Data. Unlike previous studies in semi-
supervised learning that use in-domain unlabeled data (e.g.,

5 A larger model might benefit from more data while a small model with
limited capacity can easily saturate.

Top-1 Acc. ‘ 83.4% 833% 837% 839% 83.8% 84.0%

Table 10: NoisyStudent’s performance improves with more
unlabeled data. Models are trained for 700 epochs without
iterative training. The baseline model achieves an accuracy
of 83.2%.

CIFAR-10 images as unlabeled data for a small CIFAR-
10 training set), to improve ImageNet, we must use out-
of-domain unlabeled data. Here we compare hard pseudo-
label and soft pseudo-label for out-of-domain data. Since
a teacher model’s confidence on an image can be a good
indicator of whether it is an out-of-domain image, we
consider the high-confidence images as in-domain im-
ages and the low-confidence images as out-of-domain im-
ages. We sample 1.3M images in each confidence interval
[0.0,0.1],[0.1,0.2],--- ,[0.9,1.0].

We use EfficientNet-B0O as both the teacher model and
the student model and compare using NoisyStudent with
soft pseudo labels and hard pseudo labels. The results are
shown in Figure 5 with the following observations: (/)
Soft pseudo labels and hard pseudo labels can both lead to
significant improvements with in-domain unlabeled images
i.e., high-confidence images. (2) With out-of-domain unla-
beled images, hard pseudo labels can hurt the performance
while soft pseudo labels lead to robust performance.
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Figure 5: Soft pseudo labels lead to better performance for
low confidence data (out-of-domain data). Each dot at p
represents a NoisyStudent model trained with 1.3M Ima-
geNet labeled images and 1.3M unlabeled images with con-
fidence scores in [p, p + 0.1].

Note that we have also observed that using hard pseudo
labels can achieve as good results or slightly better results
when a larger teacher is employed. Hence, whether soft
pseudo labels or hard pseudo labels work better might need



to be determined on a case-by-case basis.

Study #4: Student Model’s Capacity. Then, we inves-
tigate the effects of student models with different capaci-
ties. For teacher models, we use EfficientNet-B0O, B2 and
B4 trained on labeled data and EfficientNet-B7 trained us-
ing NoisyStudent. We compare using a student model with
the same size or with a larger size. The comparison is shown
in Table 11. With the same teacher, using a larger student
model leads to consistently better performance, showing
that using a large student model is important to enable the
student to learn a more powerful model.

Teacher  Teacher Acc. ‘ Student  Student Acc.
BO 77.3% g(l) ;;2 ZZ
B2 80.0% E; 88% ZZ
B4 83.2% gg 88:332
B7 86.9% E; 883332

Table 11: Using a larger student model leads to better per-
formance. Student models are trained for 350 epochs in-
stead of 700 epochs without iterative training. The B7
teacher with an accuracy of 86.9% is trained by NoisyS-
tudent with multiple iterations using B7. The comparison
between B7 and L2 as student models is not completely fair
for L2, since we use an unlabeled batch size of 3x the la-
beled batch size for training L2, which is not as good as
using an unlabeled batch size of 7x the labeled batch size
when training B7 (See Study #7 for more details).

Study #5: Data Balancing. Here, we study the neces-
sity of keeping the unlabeled data balanced across cate-
gories. As a comparison, we use all unlabeled data that
has a confidence score higher than 0.3. We present results
with EfficientNet-BO to B3 as the backbone models in Ta-
ble 12. Using data balancing leads to better performance for
small models EfficientNet-BO and B1. Interestingly, the gap
becomes smaller for larger models such as EfficientNet-B2
and B3, which shows that more powerful models can learn
from unbalanced data effectively. To enable NoisyStudent
to work well for all model sizes, we use data balancing by
default.

Study #6: Joint Training. In our algorithm, we train
the model with labeled images and pseudo-labeled images
jointly. Here, we also compare with an alternative approach
used by Yalniz ef al. [91], which first pretrains the model
on pseudo-labeled images and then finetunes it on labeled

Model | BO Bl B2 B3
Supervised Learning ‘ 773%  792%  80.0%  81.7%
NoisyStudent 779% 799% 80.7%  82.1%

w/o Data Balancing | 77.6%  79.6%  80.6%  82.1%

Table 12: Data balancing leads to better results for small
models. Models are trained for 350 epochs instead of 700
epochs without iterative training.

images. For finetuning, we experiment with different steps
and take the best results. The comparison is shown in Table
13.

It is clear that joint training significantly outperforms
pretraining + finetuning. Note that pretraining only on
pseudo-labeled images leads to a much lower accuracy than
supervised learning only on labeled data, which suggests
that the distribution of unlabeled data is very different from
that of labeled data. In this case, joint training leads to a
better solution that fits both types of data.

Model | BO Bl B2 B3

Supervised Learning \ 773%  792%  80.0%  81.7%
Pretraining 72.6%  751%  759%  76.5%
Pretraining + Finetuning | 77.5% 794% 803%  81.7%
Joint Training 779% 799% 80.7% 82.1%

Table 13: Joint training works better than pretraining and
finetuning. We vary the finetuning steps and report the best
results. Models are trained for 350 epochs instead of 700
epochs without iterative training.

Study #7: Ratio between Unlabeled Batch Size and La-
beled Batch Size. Since we use 130M unlabeled images
and 1.3M labeled images, if the batch sizes for unlabeled
data and labeled data are the same, the model is trained on
unlabeled data only for one epoch every time it is trained
on labeled data for a hundred epochs. Ideally, we would
also like the model to be trained on unlabeled data for more
epochs by using a larger unlabeled batch size so that it can
fit the unlabeled data better. Hence we study the importance
of the ratio between unlabeled batch size and labeled batch
size.

In this study, we try a medium-sized model EfficientNet-
B4 as well as a larger model EfficientNet-L2. We use mod-
els of the same size as both the teacher and the student. As
shown in Table 14, the larger model EfficientNet-L2 bene-
fits from a large ratio while the smaller model EfficientNet-
B4 does not. Using a larger ratio between unlabeled batch
size and labeled batch size, leads to substantially better per-
formance for a large model.
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Table 14: With a fixed labeled batch size, a larger unlabeled
batch size leads to better performance for EfficientNet-L2.
The Batch Size Ratio denotes the ratio between unlabeled
batch size and labeled batch size.

Study #8: Warm-starting the Student Model. Lastly,
one might wonder if we should train the student model from
scratch when it can be initialized with a converged teacher
model with good accuracy. In this ablation, we first train an
EfficientNet-BO model on ImageNet and use it to initialize
the student model. We vary the number of epochs for train-
ing the student and use the same exponential decay learning
rate schedule. Training starts at different learning rates so
that the learning rate is decayed to the same value in all
experiments. As shown in Table 15, the accuracy drops sig-
nificantly when we reduce the training epoch from 350 to
70 and drops slightly when reduced to 280 or 140. Hence,
the student still needs to be trained for a large number of
epochs even with warm-starting.

Further, we also observe that a student initialized with
the teacher can sometimes be stuck in a local optimal. For
example, when we use EfficientNet-B7 with an accuracy of
86.4% as the teacher, the student model initialized with the
teacher achieves an accuracy of 86.4% halfway through the
training but gets stuck there when trained for 210 epochs,
while a model trained from scratch achieves an accuracy of
86.9%. Hence, though we can save training time by warm-
staring, we train our model from scratch to ensure the best
performance.

Warm-start Initializing student with teacher No Init
Epoch 35 70 140 280 350

Top-1 Acc. | 774% 71.5% 11.7% 71.8% | 71.9%

Table 15: A student initialized with the teacher still requires
at least 140 epochs to perform well. The baseline model,
trained with labeled data only, has an accuracy of 77.3%.

A.4. Results with a Different Architecture and
Dataset

Results with ResNet-50. To study whether other archi-
tectures can benefit from NoisyStudent, we conduct exper-
iments with ResNet-50 [30]. We use the full ImageNet as

the labeled data and the 130M images from JFT as the un-
labeled data. We train a ResNet-50 model on ImageNet and
use it as our teacher model. We use RandAugment with the
magnitude set to 9 as the noise.

The results are shown in Table 16. NoisyStudent leads
to an improvement of 1.3% on the baseline model, which
shows that NoisyStudent is effective for architectures other
than EfficientNet.

Method | Top-1Acc.  Top-5 Acc.
ResNet-50 77.6% 93.8%
NoisyStudent (ResNet-50) 78.9 % 94.3 %

Table 16: Experiments on ResNet-50.

Results on SVHN. We also evaluate NoisyStudent on a
smaller dataset SVHN. We use the core set with 73K im-
ages as the training set and the validation set. The extra
set with 531K images are used as the unlabeled set. We
use EfficientNet-B0 with strides of the second and the third
blocks set to 1 so that the final feature map is 4x4 when the
input image size is 32x32.

As shown in Table 17, NoisyStudent improves the base-
line accuracy from 98.1% to 98.6% and outperforms the
previous state-of-the-art results achieved by RandAugment
with Wide-ResNet-28-10.

Method ‘ Accuracy
RandAugment (WRN) |  98.3%
EfficientNet-BO 98.1%
NoisyStudent (B0O) 98.6%

Table 17: Results on SVHN.

A.S. Details of Robustness Benchmarks

Metrics. For completeness, we provide brief descriptions
of metrics used in robustness benchmarks ImageNet-A,
ImageNet-C and ImageNet-P.

o ImageNet-A. The top-1 and top-5 accuracy are mea-
sured on the 200 classes that ImageNet-A includes.
The mapping from the 200 classes to the original Ima-
geNet classes are available online.®

e ImageNet-C. mCE (mean corruption error) is the
weighted average of error rate on different corruptions,
with AlexNet’s error rate as a baseline. The score
is normalized by AlexNet’s error rate so that corrup-
tions with different difficulties lead to scores of a sim-
ilar scale. Please refer to [31] for details about mCE

Ohttps://github.com/hendrycks/natural-adv-
examples/blob/master/eval.py



and AlexNet’s error rate. The top-1 accuracy is simply
the average top-1 accuracy for all corruptions and all
severity degrees. The top-1 accuracy of prior methods
are computed from their reported corruption error on
each corruption.

o ImageNet-P. Flip probability is the probability that the
model changes top-1 prediction for different pertur-
bations. mFR (mean flip rate) is the weighted aver-
age of flip probability on different perturbations, with
AlexNet’s flip probability as a baseline. Please refer to
[31] for details about mFR and AlexNet’s flip proba-
bility. The top-1 accuracy reported in this paper is the
average accuracy for all images included in ImageNet-
P.

On Using RandAugment for ImageNet-C and
ImageNet-P. Since NoisyStudent leads to signifi-
cant improvements on ImageNet-C and ImageNet-P,
we briefly discuss the influence of RandAugment on
robustness results. First, note that our supervised baseline
EfficientNet-L2 also uses RandAugment. NoisyStudent
leads to significant improvements when compared to the
supervised baseline as shown in Table 4 and Table 5.
Second, the overlap between transformations of Ran-
dAugment and ImageNet-C, P is small. For completeness,
we list transformations in RandAugment and corruptions
and perturbations in ImageNet-C and ImageNet-P here:

e RandAugment transformations: AutoContrast, Equal-
ize, Invert, Rotate, Posterize, Solarize, Color, Con-
trast, Brightness, Sharpness, ShearX, ShearY, Trans-
lateX and TranslateY.

e Corruptions in ImageNet-C: Gaussian Noise, Shot
Noise, Impulse Noise, Defocus Blur, Frosted Glass
Blur, Motion Blur, Zoom Blur, Snow, Frost, Fog,
Brightness, Contrast, Elastic, Pixelate, JPEG.

e Perturbations in ImageNet-P: Gaussian Noise, Shot
Noise, Motion Blur, Zoom Blur, Snow, Brightness,
Translate, Rotate, Tilt, Scale.

The main overlap between RandAugment and
ImageNet-C are Contrast, Brightness and Sharpness.
Among them, augmentation Contrast and Brightness
are also used in ResNeXt-101 WSL [55] and in vision
models that uses the Inception preprocessing [34, 79]. The
overlap between RandAugment and ImageNet-P includes
Brightness, Translate and Rotate.



