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Laura Leal-Taixé2 Xavier Alameda-Pineda1
1Inria, LJK, Univ. Grenoble Alpes, France 2Technical University of Munich, Germany

3Distributed Robotics Lab, CSAIL, MIT, USA
1{firstname.lastname}@inria.fr 2{aljosa.osep, leal.taixe}@tum.de 3yban@csail.mit.edu

A. Implementation Details
A.1. DHN

For training the DHN, we use the RMSprop opti-
mizer [17] with a learning rate of 0.0003, gradually decreas-
ing by 5% every 20,000 iterations. We train DHN for 20
epochs (6 hours on a Titan XP GPU). For the focal loss, we
weight zero-class by w0 = n1/(n0 + n1) and one-class by
w1 = 1 − w0. Here n0 is the number of zeros and n1 the
number of ones in A∗. We also use a modulating factor of
2 in the focal loss. Once the DHN training converges, we
freeze the DHN weights and keep them fixed when training
trackers with DeepMOT.

Datasets. To train the DHN, we generate training pairs
as follows. We first compute distance matrices D us-
ing ground-truth labels (bounding boxes) and object detec-
tions provided by the MOTChallenge datasets (MOT 15-17)
[11, 13]. We augment the data by setting all entries, higher
than the randomly (with an uniform distribution ranging
from 0 to 1) selected threshold, to a large value to discour-
age these assignments. This way, we obtain a rich set of
various distance matrices. We then compute assignments
using the (Hungarian algorithm) HA (variant used in [2])
to get the corresponding (binary) assignment matrices A∗,
used as a supervisory signal. In this way, we obtain a dataset
of matrix pairs (D and A∗), separated into 114,483 training
and 17,880 testing instances.

A.2. Trackers

Datasets. For training object trackers, we use the MOT17
train set. For the ablation studies, we divide the MOT17 into
train/val sets. We split each sequence into three parts: the
first, one containing 50% of frames, the second one 25%,
and the third 25%. We use the first 50% for training data
and the last 25% for validation to make sure there is no over-
lap between the two. In total, we use 2,664 frames for the
train set, containing 35,836 ground-truth bounding boxes
and 306 identities. For the validation split, we have 1,328
frames with 200 identities. The public object detections

(obtained by DPM [6], SDP [18] and Faster RCNN [14] de-
tectors) from the MOTChallenge are used only during track-
ing.

Training. We use the Adam optimizer [10] with a learning
rate of 0.0001. We train the SOTs for 15 epochs (72h), and
we train Tracktor (regression head and ReID head) for 18
epochs (12h) on a Titan XP GPU.

Loss Hyperparameters. When training trackers using our
DeepMOT loss, we set the base value of δ = 0.5, and the
loss balancing factors of λ = 5, γ = 2, as determined on
the validation set.

Training Details. To train object trackers, we randomly
select one training instance from the sequence that corre-
sponds to a pair of consecutive frames. Then, we initial-
ize object trackers using ground-truth detections and predict
track continuations in the next frame. At each time step, we
use track predictions and ground-truth bounding boxes to
compute D, which we pass to our DHN and, finally, com-
pute loss and back-propagate the gradients to the tracker.

Data Augmentation. We initialize trackers using ground-
truth bounding boxes. To mimic the effects of imperfect ob-
ject detectors and prevent over-fitting, we perform the fol-
lowing data augmentations during the training:

• We randomly re-scale the bounding boxes with a scal-
ing factor ranging from 0.8 to 1.2.

• We add random vertical and horizontal offset vectors
(bounding box width and/or height scaled by a random
factor ranging from 0 to 0.25).

Training with the ReIDhead. While training Tracktor
with our ReIDhead, we make the following changes. In-
stead of selecting a pair of video frames, we randomly select
ten consecutive frames. This is motivated by the implemen-
tation of external ReID mechanism in [1], where tracker av-
erages appearance features over ten most recent frames. At
each training step, we compute representative embedding
by averaging embeddings of the past video frames and use



it to compute the cosine distance to the ground-truth object
embeddings.

Test-time Track Managment. For the MOT-by-SOT base-
line, we use detections from three different detectors (DPM,
SDP, and FRCNN) to refine the track predictions. When
the IoU between a track prediction and detection is higher
than 0.6, we output their average. We also reduce FP in the
public detections based on detection scores produced by a
Faster RCNN detector. For the birth and death processes,
we initialize a new track only when detections appear in
3 consecutive frames, and they have a minimal consecutive
IoU overlap of 0.3. Tracks that can not be verified by the de-
tector are marked invisible and are terminated afterK = 60
frames. For Tracktor, we use the same track management
and suppression strategy as proposed in [1].

B. Additional DHN Ablation
We perform DHN ablation using our test split of 17,880

DHN training instances, as explained in Sec. A.1. In ad-
dition, we evaluate the generalization of DHN by evaluat-
ing performing evaluation using distance matrices, gener-
ated during the DeepMOT training process.

Accuracy. We compute the weighted accuracy as (using
the same weighting factors w1 and w0 as for the loss):

WA =
w1n

∗
1 + w0n

∗
0

w1n1 + w0n0
. (1)

Here, n∗1 and n∗0 are the number of true and false positives,
respectively.

Validity. The output of the matching algorithm should be
a permutation matrix; i.e., there should be at most one as-
signment per row/column. In the case of the HA, this is ex-
plicitly enforced via constraints on the solution. To study
how well the predicted (discretized) assignment matrices
preserve this property, we count the number of rows and
columns by the following criteria:

• Several Assignments (SA) counts the number of
rows/columns that have more than one assignment
(when performing column-wise maximum and row-
wise maximum, respectively).

• Missing Assignments (MA) counts the number of
rows/columns that are not assigned (when performing
column-wise maximum and row-wise maximum, re-
spectively) when ground-truth assignment matrix A∗

has an assignment or inversely, no assignment in A∗

while Ā (see below) has an assignment in the corre-
sponding rows/columns.

Discretization. To perform the evaluation, we first need
to discretize the soft assignment matrix Ã, predicted by our

DHN to obtain a discrete assignment matrix Ā. There are
two possibilities.

(i) For each row of Ā, we set the entry of Ā correspond-
ing to the largest value of the row to 1 (as long as it
exceeds 0.5) and the remaining values are set to 0. We
refer to this variant as row-wise maximum.

(ii) Analogously, we can perform column-wise maximum
by processing columns instead of rows.

DHN variants. We compare three different DHN architec-
tures:

(i) Sequential DHN (seq, see Fig. 1),

(ii) Parallel DHN (paral, see Fig. 2),

(iii) 1D Convolutional DHN (1d conv, see Fig. 3).

The recurrent unit of the two recurrent architectures, seq
and paral, is also ablated between long-short term memory
units (lstm) [8] and gated recurrent units (gru) [4].
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Figure 1. Sequential DHN: Structure of the proposed Deep Hun-
garian Net. The row-wise and column-wise flattening are inspired
by the original Hungarian algorithm, while the Bi-RNN allows for
all decisions to be taken globally, thus is accounting for all input
entries.
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Figure 2. Parallel DHN variant: (i) We perform row-wise and the
column-wise flattening of D. (ii) We process the flattened vec-
tors using two different Bi-RNNs. (iii) They then are respectively
passed to an FC layer for reducing the number of channels and
are concatenated along the channel dimension. (iv) After two FC
layers we reshape the vector and apply the sigmoid activation.

From Tab. 1, we see that the proposed sequential DHN
(seq gru) obtains the highest WA (92.88% for row-wise
maximum and 93.49% for column-wise maximum) com-
pared to others. Compared to the 1D convolutional DHN
variant (WA of 56.43% and 56.18% for row-wise and
column-wise maximum, respectively), Bi-RNN shows the



 

Distance Matrix
(Track to Ground Truth) 

M

N

Row-wise
flatten

...

M × N

Conv1D(1,24,15)
  

M × N

24 

1/2×M × N

48

Conv1D(24,48,15)

48
1/4×M

× N

Pooling 1/2
1/2×M × N

48

Upsampling × 2

1/2×M × N
48

Conv1D
(96,48,5)

Concatenate

M × N

48

Upsampling × 2

M × N

24 
Conv1D
(72,24,5)

Concatenate

M × N

25

Concatenate

N

M

Soft Assignment Matrix

Conv1D
(25,1,1)

...

M × NSigmoid 

Reshape 

Conv1D(48, 48,15)

D Ã

Figure 3. 1D convolutional DHN: Our 1D convolutional DHN
variant is inspired by the U-Net [15]. The encoder consists of
two 1D-convolution layers of shapes [1, 24, 15] and [24, 48, 15]
([#input channels, #output channels, kernel size]). The decoder
consists of two 1D convolutional layers of shapes [96, 48, 5] and
[72, 24, 5]. Finally, we apply an 1D convolution and a sigmoid
activation to produce Ã.

Discretization Network WA % (↑) MA% (↓) SA% (↓)

Row-wise
maximum

seq gru (proposed) 92.88 4.79 3.39
seq lstm 83.66 13.79 5.98

paral gru 89.56 8.21 4.99
paral lstm 88.93 8.67 5.38

1d conv 56.43 35.06 2.78

Column-wise
maximum

seq gru (proposed) 93.49 6.41 26.57
seq lstm 87.07 13.54 47.04

paral gru 91.01 7.98 46.25
paral lstm 90.50 8.60 47.43

1d conv 56.18 79.54 7.73

Table 1. Evaluation results: comparison of different network struc-
tures and settings in terms of WA, MA and SA on the DHN test
set.

advantage of its global view due to the receptive field, equal
to the entire input. For the sequential DHN setting, we ob-
serve in Tab. 1 that gru units consistently outperform lstm
units with WA +9.22% (row-wise maximum) and +6.42%
(column-wise maximum). Finally, the proposed sequen-
tial DHN is more accurate compared to the parallel variant
of DHN (+3.32% for row-wise and +2.48% for column-
wise maximum). As for the validity, the proposed seq gru
commits the least missing assignments (MA) (4.79% and
6.41% for row-wise and column-wise maximum, respec-
tively), and commits only a few SA compared to other vari-
ants.

DHN is a key component of our proposed DeepMOT
training framework. To evaluate how well DHN performs
during training as a proxy to deliver gradients from the
DeepMOT loss to the tracker, we conduct the following
experiment. We evaluate DHN using distance matrices D,
collected during the DeepMOT training process. As can be
seen in Tab. 2, the proposed sequential DHN (seq gru) out-

Discretization Network WA % (↑) MA% (↓) SA% (↓)

Row-wise
maximum

seq gru (proposed) 92.71 13.17 9.70
seq lstm 91.64 14.55 10.37

paral gru 86.84 23.50 17.15
paral lstm 71.58 42.48 22.62

1d conv 83.12 32.73 5.73

Column-wise
maximum

seq gru (proposed) 92.36 12.21 3.69
seq lstm 91.93 13.15 4.71

paral gru 87.24 20.56 16.67
paral lstm 72.58 39.55 23.16

1d conv 82.74 32.94 1.11

Table 2. Evaluation results. Comparison of different network
structures and settings in terms of WA, MA and SA on distance
matrices during training.

performs the others variants, with a WA of 92.71% for row-
wise and 92.36% for column-wise maximum. For validity,
it also attains the lowest MA: 13.17% (row) and 12.21%
(column). The SA is kept at a low level with 9.70% and
3.69% for row-wise and column-wise maximum discretiza-
tions, respectively. Based on these results, we conclude that
(i) our proposed DHN generalizes well to matrices, used to
train our trackers, and (ii) it produces outputs that closely
resemble valid permutation matrices.
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Figure 4. Evaluation of performance of DHN and its variants on
D of different sizes.

Matrix Size. To provide further insights into DHN, we
study the impact of the distance matrix size on the assign-
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Figure 5. Visualization of negative gradients (direction and magni-
tude) from different terms in the proposed DeepMOT loss: (a) FP
and FN (b) MOTP (c-d) IDS (compare (c) t − 1 with (d) t). The
predicted bounding-boxes are shown in blue, the ground-truth are
shown in green and the gradient direction is visualized using red
arrows.
ment accuracy. We visualize the relation between WA and
the input matrix size in Fig. 4. For validation, we generate
square matrices with sizes ranging from [2, 300]. Precisely,
we generate D with a uniform distribution [0, 1) and use
the Hungarian algorithm implementation from [2] to gen-
erate assignment matrices A∗. For each size, we evaluate
10 matrices, which gives us 2,990 matrices in total. As can
be seen in Fig. 4, (i) the proposed seq gru consistently out-
performs the alternatives. (ii) The assignment accuracy of
DHN and its variants decreases with the growth of the ma-
trix size. Moreover, we observe a performance drop for very
small matrices (i.e., M = N 6 6). This may be due to the
imbalance with respect to the matrix size during the train-
ing.

C. Training Gradient Visualization
The negative gradient should reflect the direction that

minimizes the loss. In in Fig. 5 we plot the negative gradient
of different terms that constitute our DeepMOT loss w.r.t.
the coordinates of each predicted bounding box to demon-
strate visually the effectiveness of our DeepMOT. In this
example, we manually generated the cases which contain
the FP, FN or IDS. We observe that the negative gradient
does encourage the tracks’ bounding boxes to be close to
those of their associated objects during the training.

D. MOT15 Results
We summarize the results we obtain on MOT15 dataset

in Tab. 3. Our key observations are:

(i) For the MOT-by-SOT baseline, we significantly im-

Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

2D
M

O
T

20
15

DeepMOT-Tracktor 44.1 75.3 46.0 17.2 26.6 6085 26917 1347
Tracktor [1] 44.1 75.0 46.7 18.0 26.2 6477 26577 1318

DeepMOT-SiamRPN 33.3 74.6 32.7 9.3 43.7 7825 32211 919
SiamRPN [12] 31.0 73.9 30.7 12.6 41.7 10241 31099 1062

DeepMOT-GOTURN 29.8 75.3 27.7 4.0 66.6 3630 38964 524
GOTURN [7] 23.9 72.8 22.3 3.6 66.4 7021 38750 965

AP HWDPL p [3] 38.5 72.6 47.1 8.7 37.4 4005 33203 586
AMIR15 [16] 37.6 71.7 46.0 15.8 26.8 7933 29397 1026
JointMC [9] 35.6 71.9 45.1 23.2 39.3 10580 28508 457
RAR15pub [5] 35.1 70.9 45.4 13.0 42.3 6771 32717 381

Table 3. Results on MOTChallenge MOT15 benchmark.

prove over the trainable baselines (SiamRPN and GO-
TURN). DeepMOT-SiamRPN increases MOTA for
+2.3%, MOTP for +0.7% and IDF1 for +2.0%. Re-
markably, DeepMOT-SiamRPN suppresses 2,416 FP
and 143 IDS. We observe similar performance gains
for DeepMOT-GOTURN.

(ii) DeepMOT-Tracktor obtains results, comparative to
the vanilla Tracktor [1]. Different from MOT16 and
MOT17 datasets, we observe no improvements in
terms of MOTA, which we believe is due to the fact
that labels in MOT15 are very noisy, and vanilla
Tracktor already achieves impressive performance.
Still, we increase MOTP for 0.3% and reduce FP for
392.
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