Assumption 1. (Bounded variance) Assume that the DSP stochastic gradient G(z; ) satisfies:

Var [G(x; )] < 0”.

Assumption 2. (Lipschitz continuous gradient) Assume that the loss and the output of the blocks have Lip-
schitz continuous gradient, that is, Vk € {0,1,.., K —1}, and V(0 1, ..., T 1), (T0.2, -y T 2) € RboFdrt-Fdic)
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and Vi, 10 € Rd,

[V f(z1) = V()| < Li [lo — 22|

Assumption 3. (Bounded error gradient) Assume that the norm of the error gradient that a block receives
is bounded, that is, for any € R%, Vk € {0,1, ..., K — 2},
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1 Basic Lemmas

Lemma 1. If Assumptions 2 and 3 hold, the difference between DSP gradient and BP gradient regarding the
parameters of block k satisfies:
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Proof. We gradually move the DSP gradient of the block k towards the BP gradient by replacing one block’s
backward parameters with its forward parameters at a time. K — k steps in total are needed, and each
step will introduce an error. After all the replacement is done, it becomes the BP gradient at the forward

parameters. Firstly we replace xij ~'~* with z}*, and calculate the error introduced as follows,
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Secondly we replace z;”"| with 2"}, and calculate the error introduced,
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We repeatedly perform the above procedure, until we get the error in the last step,
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Add them together and we will have
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Lemma 2. Assume Assumption 2 and 3 exist. The second moment of the difference between DSP and BP

gradient satisfies,
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Proof. Via summation of Lemma 1 we can get,
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2 DSP with SGD

Theorem 1. Assume Assumptions 1, 2 and 3 hold. Let cg = M?K(K + 1)?, and ¢; = —(At? + 2) +
V(A2 +2)2 + 2¢oAt2. If the learning rate o, < then
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Proof. According to Lipschitz continuous, we have
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Take expectation regarding £ on both sides,
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The last inequality utilizes Lemma 2. Consider the first term and take expectation,
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Take the total expectation and perform summation for it,
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Take the total expectation and perform summation for all the terms,
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The last inequality utilizes the restriction on the learning rate. Then we have
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3 DSP with Momentum SGD
The SUM method also implies the following recursions,
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Lemma 3. Assume Assumption 1 exists. Let co = % then
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Proof. Let & = ((1 — 8)s — 1)a. From Eq. (1),
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Note that v° = 0. Then

anzg )

=0

n—1 2
_ @2 (Z ﬁn—l—i) E
=0

n—1 4 2n-1 Bn—l—i . 2
< a2 (Z ﬁﬂ_l_l) > i B9
= =0

=0

n—1 n—1 n—1 2
— A2 Zﬁn—l—i Z Bn—l—i Hg(xl)H + d202 (Z ﬁn—l—i)
=0

Then we have,

n—1

A2E Z B"‘l_ig(xi;f)

=0

n—1

>

E[lo"|? = e
=0 Zl 0 ﬂ

=0 =0
A2 2

& n—1—i NE a9
Sl_ﬂgﬂ GG+ 755

n—1

(1= Besa® 3 571 G + ezao?,
i=0

Take the total expectation and perform summation,
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Lemma 4. Assume Assumption 1 exists, then
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Proof. First take expectation regarding &,
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Take total expectation on both sides and perform summation,

’
n

N—-1 —1
TcontY Y (B0 + sk 6@ + sato?)

N-1
Z IE’ " —x
n=0 n=0 i=n—At
N-2 ,
<288 Y (E[lo | + 20%E |G| + s*a0?)
n=0
N-1 N-1
<2082 YR 424825202 Y RG] + 24825200 N
n=0 n=0
N-1
< 2A (s + 5)a* S E [Hg(m")HQ] + 208202 (e + 52)aN.
n=0
O
Theorem 2. Assume Assumption 1, 2 and 3 hold. Let c; = %, c3 = M2K(K + 1)2At%(cy + 52),
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Proof. According to Lipschitz continuous gradient,
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Take the total expectation and perform summation,
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The second inequality utilizes Lemma 3 and 4. According to the restriction on the learning rate, we
can remove the second term in the last equality,
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Therefore we have,
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