
Assumption 1. (Bounded variance) Assume that the DSP stochastic gradient G(x; ξ) satisfies:

Var [G(x; ξ)] ≤ σ2.

Assumption 2. (Lipschitz continuous gradient) Assume that the loss and the output of the blocks have Lip-
schitz continuous gradient, that is, ∀k ∈ {0, 1, ..,K−1}, and ∀(x0,1, ..., xk,1), (x0,2, ..., xk,2) ∈ Rd0+d1+...+dk ,

‖∇F (h0;x0,1; ...;xk,1)−∇F (h0;x0,2; ...;xk,2)‖ ≤ Lk ‖(x0,1, ..., xk,1)− (x0,2, ..., xk,2)‖ ,

and ∀x1, x2 ∈ Rd,

‖∇f(x1)−∇f(x2)‖ ≤ LK ‖x1 − x2‖ .

Assumption 3. (Bounded error gradient) Assume that the norm of the error gradient that a block receives
is bounded, that is, for any x ∈ Rd, ∀k ∈ {0, 1, ...,K − 2},

∥∥∥∥∂fk+1(hk+1;xk+1)

∂hk+1
...
∂fK−1(hK−1;xK−1)

∂hK−1

∂L(hK , l)

∂hK

∥∥∥∥ ≤M and
∥∥∥∥∂L(hK , l)

∂hK

∥∥∥∥ ≤M.

1 Basic Lemmas
Lemma 1. If Assumptions 2 and 3 hold, the difference between DSP gradient and BP gradient regarding the
parameters of block k satisfies:

∥∥∥∇xk
L(F (h0;xt00 ; ...;x

tK−1

K−1 ), y)− Gxk
(x
t2K−1

0 ; ...;xtKK−1)
∥∥∥ ≤ LM K−1∑

i=k

∥∥∥xt2K−1−i

i − xtii
∥∥∥ .

Proof. We gradually move the DSP gradient of the block k towards the BP gradient by replacing one block’s
backward parameters with its forward parameters at a time. K − k steps in total are needed, and each
step will introduce an error. After all the replacement is done, it becomes the BP gradient at the forward
parameters. Firstly we replace xt2K−1−k

k with xtkk , and calculate the error introduced as follows,

‖∆k‖ =

∥∥∥∥∥
(
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k )

∂x
t2K−1−k

k

−
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;xtkk )

∂xtkk

)
·

∂F (h0;xt00 ; ...;xtkk ;x
t2K−2−k

k+1 )

∂F (h0;xt00 ; ...;xtkk )
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2 )
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1 ), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1 )

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;xt00 ; ...;x
tk−1

k−1 ;x
t2K−1−k

k )

∂x
t2K−1−k

k

−
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;xtkk )

∂xtkk

∥∥∥∥∥ ·∥∥∥∥∥∂F (h0;xt00 ; ...;xtkk ;x
t2K−2−k

k+1 )

∂F (h0;xt00 ; ...;xtkk )
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2 )
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1 ), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1 )

∥∥∥∥∥∥
≤ LM

∥∥∥xt2K−1−k

k − xtkk
∥∥∥ .

Secondly we replace xt2K−2−k

k+1 with xtk+1

k+1 , and calculate the error introduced,
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‖∆k+1‖ =

∥∥∥∥∥
(
∂F (h0;xt00 ; ...;xtkk ;x

t2K−2−k

k+1 )

∂xtkk
−
∂F (h0;xt00 ; ...;xtkk ;x

tk+1

k+1 )

∂xtkk

)
·

∂F (h0;xt00 ; ...;x
tk+1

k+1 ;x
t2K−3−k

k+2 )

∂F (h0;xt00 ; ...;x
tk+1

k+1 )
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2 )
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1 ), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1 )

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;xt00 ; ...;xtkk ;x
t2K−2−k

k+1 )

∂xtkk
−
∂F (h0;xt00 ; ...;xtkk ;x

tk+1

k+1 )

∂xtkk

∥∥∥∥∥ ·∥∥∥∥∥∂F (h0;xt00 ; ...;x
tk+1

k+1 ;x
t2K−3−k

k+2 )

∂F (h0;xt00 ; ...;x
tk+1

k+1 )
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2 )
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1 ), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1 )

∥∥∥∥∥∥
≤ LM

∥∥∥xt2K−2−k

k+1 − xtk+1

k+1

∥∥∥ .
We repeatedly perform the above procedure, until we get the error in the last step,

‖∆K−1‖ =

∥∥∥∥∥
(
∂F (h0;xt00 ; ...;x

tK−2

K−2 ;xtKK−1)

∂xtkk
−
∂F (h0;xt00 ; ...;x

tK−2

K−2 ;x
tK−1

K−1 )

∂xtkk

)
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1 ), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1 )

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂xtkk
−
∂F (h0;xt00 ; ...;x

tK−2

K−2 ;x
tK−1

K−1 )

∂xtkk

∥∥∥∥∥ ·∥∥∥∥∥∥
∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1 ), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1 )

∥∥∥∥∥∥
≤ LM

∥∥∥xtKK−1 − x
tK−1

K−1

∥∥∥ .
Add them together and we will have

∥∥∥∇xk
L(F (h0;xt00 ;xt11 ; ...;x

tK−1

K−1 ), l)− Gxk
(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtKK−1)
∥∥∥

= ‖∆k + ∆k+1 + ...+ ∆K−1‖
≤ ‖∆k‖+ ‖∆k+1‖+ ...+ ‖∆K−1‖

≤ LM
K−1∑
i=k

∥∥∥xt2K−1−i

i − xtii
∥∥∥ .

Lemma 2. Assume Assumption 2 and 3 exist. The second moment of the difference between DSP and BP
gradient satisfies,

∥∥∥∇f(xt00 ; ...;x
tK−1

K−1 )− G(x
t2K−1

0 ; ...;xtKK−1)
∥∥∥2

≤ 1

2
L2c0

K−1∑
k=0

k + 1

K + 1

∥∥∥xt2K−1−k

k − xtkk
∥∥∥2

.
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Proof. Via summation of Lemma 1 we can get,

∥∥∥∇f(xt00 ;xt11 ; ...;x
tK−1

K−1 )− G(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtKK−1)
∥∥∥ ≤ LM K−1∑

k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtkk
∥∥∥ .

Then we have,

∥∥∥∇f(xt00 ;xt11 ; ...;x
tK−1

K−1 )− G(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtKK−1)
∥∥∥2

≤ L2M2

(
K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtkk
∥∥∥)2

= L2M2

(
K−1∑
k=0

(k + 1)

)2(K−1∑
k=0

k + 1∑K−1
k=0 (k + 1)

∥∥∥xt2K−1−k

k − xtkk
∥∥∥)2

≤ L2M2

(
K−1∑
k=0

(k + 1)

)2 K−1∑
k=0

k + 1∑K−1
k=0 (k + 1)

∥∥∥xt2K−1−k

k − xtkk
∥∥∥2

=
1

2
L2M2K(K + 1)

K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtkk
∥∥∥2

.

2 DSP with SGD
Theorem 1. Assume Assumptions 1, 2 and 3 hold. Let c0 = M2K(K + 1)2, and c1 = −(∆t2 + 2) +√

(∆t2 + 2)2 + 2c0∆t2. If the learning rate αn ≤ c1
Lc0∆t2 , then∑N−1

n=0 αnE
∥∥∥∇f(xn

′
)
∥∥∥2

∑N−1
n=0 αn

≤
2
[
f(x0)− f∗

]∑N−1
n=0 αn

+
Lσ2(2 +K∆t2 + 1

4Kc1)
∑N−1
n=0 α

2
n∑N−1

n=0 αn
.

Proof. According to Lipschitz continuous, we have

f(xn+1)− f(xn) ≤
〈
∇f(xn), xn+1 − xn

〉
+
L

2

∥∥xn+1 − xn
∥∥2

= −αn 〈∇f(xn),G(xn; ξ)〉+
Lα2

n

2
‖G(xn; ξ)‖2

= −αn
〈
∇f(xn)−∇f(xn

′
),G(xn; ξ)

〉
− αn

〈
∇f(xn

′
),G(xn; ξ)

〉
+
Lα2

n

2
‖G(xn; ξ)‖2

≤ 1

2L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
Lα2

n

2
‖G(xn; ξ)‖2 − αn

〈
∇f(xn

′
),G(xn; ξ)

〉
+
Lα2

n

2
‖G(xn; ξ)‖2

≤ L

2

∥∥∥xn − xn′∥∥∥2

− αn
〈
∇f(xn

′
),G(xn; ξ)

〉
+ Lα2

n ‖G(xn; ξ)‖2 .

Take expectation regarding ξ on both sides,
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E
[
f(xn+1)

]
− f(xn) ≤ L

2

∥∥∥xn − xn′∥∥∥2

− αn
〈
∇f(xn

′
),G(xn)

〉
+ Lα2

nE ‖G(xn; ξ)‖2

=
L

2

∥∥∥xn − xn′∥∥∥2

+
αn
2

(∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
∥∥∥∇f(xn

′
)
∥∥∥2

− ‖G(xn)‖2
)

+ Lα2
n

(
‖G(xn)‖2 + Var [G(xn; ξ)]

)
≤ L

2

∥∥∥xn − xn′∥∥∥2

+
αn
2

∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
(αn

2
− Lα2

n

)
‖G(xn)‖2

− αn
2

∥∥∥∇f(xn
′
)
∥∥∥2

+ Lα2
nσ

2

≤
K−1∑
k=0

[
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

] ∥∥∥xnk − xn′k ∥∥∥2

−
(αn

2
− Lα2

n

)
‖G(xn)‖2

− αn
2

∥∥∥∇f(xn
′
)
∥∥∥2

+ Lα2
nσ

2.

The last inequality utilizes Lemma 2. Consider the first term and take expectation,

E
∥∥∥xnk − xn′k ∥∥∥2

= E

∥∥∥∥∥
n−1∑

i=n−∆tk

−αiGxk
(xi; ξ)

∥∥∥∥∥
2

≤ ∆tk

n−1∑
i=n−∆tk

α2
iE
∥∥Gxk(xi; ξ)

∥∥2

≤ ∆t

n−1∑
i=n−∆t

α2
i

(∥∥Gxk
(xi)

∥∥2
+ σ2

)
.

Take the total expectation and perform summation for it,

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
E
∥∥∥xnk − xn′k ∥∥∥2

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t

n−1∑
i=n−∆t

α2
i

(
E
∥∥Gxk

(xi)
∥∥2

+ σ2
)

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t ·∆t · α2

n

(
E ‖Gxk

(xn)‖2 + σ2
)
.

Take the total expectation and perform summation for all the terms,

4



E
[
f(xN )

]
− f(x0)

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

n

(
E ‖Gxk

(xn)‖2 + σ2
)

−
N−1∑
n=0

(αn
2
− Lα2

n

)
E
K−1∑
k=0

‖Gxk
(xn)‖2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n

=

N−1∑
n=0

K−1∑
k=0

((
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

n −
αn
2

+ Lα2
n

)
E ‖Gxk

(xn)‖2

+

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n

≤
N−1∑
n=0

K−1∑
k=0

1

4
αn
(
L2M2K(K + 1)2∆t2α2

n +
(
2∆t2 + 4

)
Lαn − 2

)
E ‖Gxk(xn)‖2

+

N−1∑
n=0

(
1

2
LK +

1

8
αnL

2M2K2(K + 1)2

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n

≤
N−1∑
n=0

(
1

2
LK +

1

8
αnL

2M2K2(K + 1)2

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n.

The last inequality utilizes the restriction on the learning rate. Then we have

∑N−1
n=0 αnE

∥∥∥∇f(xn
′
)
∥∥∥2

∑N−1
n=0 αn

≤
2
[
f(x0)− f∗

]∑N−1
n=0 αn

+
Lσ2

∑N−1
n=0 α

2
n

[
2 +K∆t2 + 1

4αnLM
2K2(K + 1)2∆t2

]∑N−1
n=0 αn

.

3 DSP with Momentum SGD
The SUM method also implies the following recursions,

xn+1 +
β

1− β
vn+1 = xn +

β

1− β
vn − α

1− β
G(xn; ξ), n ≥ 0

vn+1 = βvn + ((1− β)s− 1)αG(xn; ξ), n ≥ 0.

(1)

where vn is given by

vn =

{
xn − xn−1 + sαG(xn−1; ξ), n ≥ 1

0, n = 0.
(2)

Let zn = xn + β
1−β v

n.

Lemma 3. Assume Assumption 1 exists. Let c2 = ((1−β)s−1)2

(1−β)2 , then

N−1∑
n=0

E ‖vn‖2 ≤ c2α2
N−1∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N.
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Proof. Let α̂ = ((1− β)s− 1)α. From Eq. (1),

vn+1 = βvn + α̂G(xn; ξ).

Note that v0 = 0. Then

vn = α̂

n−1∑
i=0

βn−1−iG(xi; ξ).

Then we have,

E ‖vn‖2 = α̂2E

∥∥∥∥∥
n−1∑
i=0

βn−1−iG(xi; ξ)

∥∥∥∥∥
2

= α̂2

(
n−1∑
i=0

βn−1−i

)2

E

∥∥∥∥∥
n−1∑
i=0

βn−1−i∑n−1
i=0 β

n−1−i
G(xi; ξ)

∥∥∥∥∥
2

≤ α̂2

(
n−1∑
i=0

βn−1−i

)2 n−1∑
i=0

βn−1−i∑n−1
i=0 β

n−1−i
E
∥∥G(xi; ξ)

∥∥2

= α̂2
n−1∑
i=0

βn−1−i
n−1∑
i=0

βn−1−i ∥∥G(xi)
∥∥2

+ α̂2σ2

(
n−1∑
i=0

βn−1−i

)2

≤ α̂2

1− β

n−1∑
i=0

βn−1−i ∥∥G(xi)
∥∥2

+
α̂2σ2

(1− β)2

= (1− β)c2α
2
n−1∑
i=0

βn−1−i ∥∥G(xi)
∥∥2

+ c2α
2σ2.

Take the total expectation and perform summation,

N−1∑
n=0

E
[
‖vn‖2

]
≤ (1− β)c2α

2
N−1∑
n=0

n−1∑
i=0

βn−1−iE
∥∥G(xi)

∥∥2
+ c2α

2σ2N

= (1− β)c2α
2
N−2∑
i=0

N−1∑
n=i+1

βn−1−iE
∥∥G(xi)

∥∥2
+ c2α

2σ2N

= (1− β)c2α
2
N−2∑
i=0

1− βN−1−i

1− β
E
∥∥G(xi)

∥∥2
+ c2α

2σ2N

≤ c2α2
N−2∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N ≤ c2α2

N−1∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N.

Lemma 4. Assume Assumption 1 exists, then

N−1∑
n=0

E
∥∥∥xn − xn′∥∥∥2

≤ 2∆t2(c2 + s2)α2
N−1∑
n=0

E ‖G(xn)‖2 + 2∆t2σ2(c2 + s2)α2N.

Proof. First take expectation regarding ξ,
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E
∥∥∥xn − xn′∥∥∥2

=

K−1∑
k=0

E
∥∥∥xnk − xn′k ∥∥∥2

=

K−1∑
k=0

E

∥∥∥∥∥
n−1∑

i=n−∆tk

vi+1
k − sαGxk

(xi; ξ)

∥∥∥∥∥
2

≤
K−1∑
k=0

∆tk

n−1∑
i=n−∆tk

E
∥∥vi+1
k − sαGxk

(xi; ξ)
∥∥2

≤
K−1∑
k=0

2∆tk

n−1∑
i=n−∆tk

(
E
∥∥vi+1
k

∥∥2
+ s2α2E

∥∥Gxk
(xi; ξ)

∥∥2
)

≤
K−1∑
k=0

2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1
k

∥∥2
+ s2α2E

∥∥Gxk
(xi; ξ)

∥∥2
)

= 2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2
+ s2α2E

∥∥G(xi; ξ)
∥∥2
)

≤ 2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2
+ s2α2

∥∥G(xi)
∥∥2

+ s2α2σ2
)
.

Take total expectation on both sides and perform summation,

N−1∑
n=0

E
∥∥∥xn − xn′∥∥∥2

≤ 2∆t

N−1∑
n=0

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2
+ s2α2E

∥∥G(xi)
∥∥2

+ s2α2σ2
)

≤ 2∆t2
N−2∑
n=0

(
E
∥∥vn+1

∥∥2
+ s2α2E ‖G(xn)‖2 + s2α2σ2

)
≤ 2∆t2

N−1∑
n=0

E ‖vn‖2 + 2∆t2s2α2
N−1∑
n=0

E ‖G(xn)‖2 + 2∆t2s2α2σ2N

≤ 2∆t2(c2 + s2)α2
N−1∑
n=0

E
[
‖G(xn)‖2

]
+ 2∆t2σ2(c2 + s2)α2N.

Theorem 2. Assume Assumption 1, 2 and 3 hold. Let c2 = ((1−β)s−1)2

(1−β)2 , c3 = M2K(K + 1)2∆t2(c2 + s2),

c4 = 3 + β2c2 + 2(1 − β)2∆t2(c2 + s2), and c5 = 2+β2c2
1−β + 2(1 − β)∆t2(c2 + s2) +

−c4+
√
c24+4(1−β)2c3
2(1−β) . If

the learning rate α is fixed and satisfies α ≤ −c4+
√
c24+4(1−β)2c3

2(1−β)c3L
, then

1

N

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(1− β)(f(x0)− f∗)

Nα
+ c5σ

2Lα.

Proof. According to Lipschitz continuous gradient,
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f(zn+1)− f(zn)

≤
〈
∇f(zn), zn+1 − zn

〉
+
L

2

∥∥zn+1 − zn
∥∥2

= − α

1− β
〈∇f(zn),G(xn; ξ)〉+

Lα2

2(1− β)2
‖G(xn; ξ)‖2

= − α

1− β
〈∇f(zn)−∇f(xn),G(xn; ξ)〉 − α

1− β
〈∇f(xn),G(xn; ξ)〉

+
Lα2

2(1− β)2
‖G(xn; ξ)‖2

≤ 1

2

(
1

L
‖∇f(zn)−∇f(xn)‖2 +

Lα2

(1− β)2
‖G(xn; ξ)‖2

)
− α

1− β
〈∇f(xn),G(xn; ξ)〉+

Lα2

2(1− β)2
‖G(xn; ξ)‖2

=
1

2L
‖∇f(zn)−∇f(xn)‖2 − α

1− β
〈∇f(xn),G(xn; ξ)〉+

Lα2

(1− β)2
‖G(xn; ξ)‖2 .

Take expectation regarding ξ on both sides,

E
[
f(zn+1)

]
− f(zn)

≤ 1

2L
‖∇f(zn)−∇f(xn)‖2 − α

1− β
〈∇f(xn),G(xn)〉+

Lα2

(1− β)2
‖G(xn)‖2 +

Lα2

(1− β)2
σ2

=
1

2L
‖∇f(zn)−∇f(xn)‖2 − α

1− β

〈
∇f(xn)−∇f(xn

′
),G(xn)

〉
− α

1− β

〈
∇f(xn

′
),G(xn)

〉
+

Lα2

(1− β)2
‖G(xn)‖2 +

Lα2

(1− β)2
σ2

≤ 1

2L
‖∇f(zn)−∇f(xn)‖2 +

1

2

(
1

L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
Lα2

(1− β)2
‖G(xn)‖2

)
+

α

2(1− β)

(∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
∥∥∥∇f(xn

′
)
∥∥∥2

− ‖G(xn)‖2
)

+
Lα2

(1− β)2
‖G(xn)‖2 +

Lα2

(1− β)2
σ2

= − α

2(1− β)

∥∥∥∇f(xn
′
)
∥∥∥2

+
1

2L
‖∇f(zn)−∇f(xn)‖2 +

1

2L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
α

2(1− β)

∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
(

α

2(1− β)
− 3Lα2

2(1− β)2

)
‖G(xn)‖2 +

Lα2

(1− β)2
σ2.

Take the total expectation and perform summation,

N−1∑
n=0

E
[

1

2L
‖∇f(zn)−∇f(xn)‖2

]
≤
N−1∑
n=0

L

2
E ‖zn − xn‖2 =

N−1∑
n=0

Lβ2

2(1− β)2
E ‖vn‖2 .
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N−1∑
n=0

E
[

1

2L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
α

2(1− β)

∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2
]

≤
N−1∑
n=0

L

2
E
∥∥∥xn − xn′∥∥∥2

+
α

4(1− β)
L2M2K(K + 1)

K−1∑
k=0

(k + 1)

N−1∑
n=0

E
∥∥∥xnk − xn′k ∥∥∥2

≤
N−1∑
n=0

L

2
E
∥∥∥xn − xn′∥∥∥2

+
α

4(1− β)
L2M2K(K + 1)2

N−1∑
n=0

E
∥∥∥xn − xn′∥∥∥2

≤
N−1∑
n=0

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
E
∥∥∥xn − xn′∥∥∥2

.

Then we have,

E
[
f(zN )

]
− f(z0)

≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

−
(

α

2(1− β)
− 3Lα2

2(1− β)2

)N−1∑
n=0

E ‖G(xn)‖2 +
Lσ2α2

(1− β)2
N

+

N−1∑
n=0

Lβ2

2(1− β)2
E ‖vn‖2 +

N−1∑
n=0

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
E
∥∥∥xn − xn′∥∥∥2

≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

−
(

α

2(1− β)
− 3Lα2

2(1− β)2

)N−1∑
n=0

E ‖G(xn)‖2 +
Lσ2α2

(1− β)2
N

+
Lβ2

2(1− β)2

(
c2α

2
N−1∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N

)

+
L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
·[

2∆t2(c2 + s2)α2
N−1∑
n=0

E ‖G(xn)‖2 + 2∆t2σ2(c2 + s2)α2N

]

= − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

−
[

α

2(1− β)
− α2

(
3L

2(1− β)2
+

Lβ2c2
2(1− β)2

+

L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

)]
·
N−1∑
n=0

E ‖G(xn)‖2

+ σ2α2N

[
L

(1− β)2
+

Lβ2c2
2(1− β)2

+ L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
= − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

+
α

2(1− β)2
[(1− β)M2K(K + 1)2∆t2(c2 + s2)L2α2+

(
3 + β2c2 + 2(1− β)2∆t2(c2 + s2)

)
Lα− (1− β)] ·

N−1∑
n=0

E ‖G(xn)‖2

+ σ2α2N

[
L

(1− β)2
+

Lβ2c2
2(1− β)2

+ L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

The second inequality utilizes Lemma 3 and 4. According to the restriction on the learning rate, we
can remove the second term in the last equality,

f∗ − f(x0) ≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

+ σ2Lα2N

[
1

(1− β)2
+

β2c2
2(1− β)2

+(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

9



Therefore we have,

1

N

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(1− β)(f∗ − f(x0))

Nα

+ σ2Lα

[
2 + β2c2

1− β
+
(
2(1− β) + αLM2K(K + 1)2

)
∆t2(c2 + s2)

]
.
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