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This supplementary file mainly indicates more exper-
imental results of the proposed stereo image restoration
method and the compared state-of-the-art methods. We will
demonstrate the visual comparisons on super-resolution, de-
blurring, and denoising tasks respectively.

1. Super Resolution

The visual comparison between our approach and other
state-of-the-art super-resolution methods, including single
image super-resolution SISR (VDSR [4], MemNet [6], ED-
SR [5], IDN [1]), stereo image SR (StereoSR [2], PASSRnet
[8]), RefSR (SRNTT [9]), and video SR methods (SPM-
C [7], DUF [3]) works, are shown in Figure 3, Figure 2,
Figure 1, Figure 4, Figure 6, and Figure 5. The proposed
approach synthesizes finer texture and restores accurate de-
tails without distortions, compared to these SR works

Figure 1: The x4 SR results on image “Motorcycle” from
Middlebury.

2. Deblurring

Figure 7 and Figure 9 denotes the deblurring compar-
isons under different kernels on Middlebury.

*This work was supported by NSFC (Grant No.: 61772137).

3. Denoising

The denoising results are depicted in Figure 7 and Figure

8.
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Figure 2: The x4 SR results on image ”Sword” from Mid-
dlebury and image "B0008” from FlyingThings3D.



Ground Truth Bicubic

PSNR/SSIM 24.545/0.8301
IDN StereoSR
26.000/0.8698 24.353/0.8388

MemNet EDSR*
26.026/0.8712 25.619/0.8651
PASSRnet Ours
26.217/0.8764 26.635/0.8840

Figure 3: The x3 SR results on image “000003_10" from KITTI 2015. PSNR and SSIM values are shown under each result.

HR Bicubic EDSR*
PSNR/SSIM 28.533/0.9066 31.275/0.9409
PSNR/SSIM 28.533/0.9066 31.275/0.9409

DUF

23.716/0.8380

23.716/0.8380

StereoSR PASSRnet Ours
28.607/0.9155 31.810/0.9472 33.224/0.9576
28.607/0.9155 31.810/0.9472 33.224/0.9576

Figure 4: Visual Results on FlyingThings3D dataset. (a) The super-resolved left images "C0010.png”, (b) Anaglyph images
”C0007.png”, viewed with red-green glasses. (c) The x4 SR results on left image C0007.png” from FlyingThings3D
dataset.
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Ground Truth Bicubic EDSR* IDN DUF StereoSR Ours

Left:PSNR/SSIM 30.623/0.8271 33.347/0.8780 33.401/0.879 33.182/0.8753 31.785/0.8539 Ours 33.625/0.8839

Right:PSNR/SSIM 29.863/0.8221 32.734/0.8759 33.010/0.8762 33.182/0.8753 31.001/0.8512 33.069/0.8806

Figure 5: The x4 left and right SR results on image “"Piano” from Middlebury. The results at the upper row are the super-
resolved left images and the results at the lower row are the right images.

Ground Truth Bicubic MemNet EDSR* DUF StereoSR Ours
PSNR/SSIM 29.698/0.8892 34.638/0.9428 34.751/0.9455 34.410/0.9435 31.845/0.9211 36.363/0.9522
PSNR/SSIM 28.579/0.7043 30.149/0.7609 29.960/0.7548 30.124/0.7619 29.815/0.7318 30.674/0.7847

Figure 6: The x4 SR results on image ’Cloth” and ”Sword” from Middlebury. PSNR and SSIM values are shown under each
result. (a), (b) The super-resolved left images of different SR methods, (c) Anaglyph images of the super-resolved stereo
pairs, the images should be viewed with red-green glasses.
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Figure 7: The denoising and deblurring results on images ’Cloth.png” from Middlebury. The noise level is 30 and the blur
kernel width o = 3.6.

Figure 8: The denoising results on images “Pipes.png” from Middlebury with noise level 30.

Figure 9: The deblurring results on images ”Swords.png” from Middlebury with kernel width o = 3.6.



