
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks
with Adaptive Sampling

Supplementary Material

A. Overview
In this supplementary material, we first provide more ad-

ditional experiments to further verify the superiority of our
model in Section B. Besides, we show the our network ar-
chitecture details in Section C.

B. Additional Experiment
B.1. Part Segmentation

Due to space limitation, we illustrate the part seg-
mentation experiments using man-made synthetic dataset
ShapeNet [15], which contains 16,881 shapes from 16
classes and 50 parts. We use the data provided by [11] and
adopt the same training and test strategy, i.e., randomly pick
2048 points as the input and concatenate the one-hot encod-
ing of the object label to the last layer.

The quantitative comparisons with the state-of-the-art
point-based methods are summarized in Tab. 5. Note that
we only compare with methods use 2048 points. When
compared with the state-of-the-arts, PointASNL achieves
comparable result, which is only slightly lower than RS-
CNN [9] using different sampling and voting strategy (as
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Figure 1. Selected results of part segmentation.

Table 1. The results (%) of four selection strategies on adaptive
sampling. For a fair comparison, the number of neighbors is set to
be equal in each layer between the two models.

Model RS FPS Average GF ModelNet40
A X X 87.9
B X X 91.5
C X X 92.3
D X X 93.2

the same reason for classification task).

B.2. Selection of Adaptive Sampling

Two variable conditions, i.e., the sampling strategy for
initial sampled points and deformation method, are inves-
tigated for this issue. Tab. 1 summarizes the results. For
the initial sampling points, we chose two strategies, i.e.,
FPS and random sampling (RS). Also for local coordinate
points and feature updates, we compare the effects of using
the weight learning by group feature (GF) and simple aver-
age of all neighbors’ coordinates and features. Note that the
number of neighbors is set to be equal for a fair comparison.

As Tab. 1 shows,, if we just use RS sample the ini-
tial points and then average their coordinates and features
(model A), we will get very low accuracy of 87.9%. How-
ever, if we use FPS instead of RS (model B), it can increase
to 91.5%. Furthermore, model C and D illustrate the weight
learning using group features can largely increase the infer-
ence ability of our model. However, if we use RS as sam-
pling strategy, it will cause some accuracy loss while we
add the group features learning. This shows that AS mod-
ule can only finely adjust the distribution of the sampled
point cloud instead of ’creating’ the missing information.

B.3. Visualization of L-NL Module

We further demonstrate the local-global learning of
PointASNL in Fig. 2. In the first layer of the network,
PNL can find global points that have similar characteris-
tics with sampled points (e.g., edge and normal vectors). In
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Figure 2. Visualization of local-global learning. For each sampled
point (red), we search its local neighbors (blue) and the K points
with the highest global response value (green), where K is equal
to the number of local neighborhoods.

Table 2. The results (mIoU, (%)) on ScanNet v2 validation set with
other model setting.

Model input grid sample deeper mIoU
A 8192 pnt 63.5
B 8192 pnt X 64.5
C 10240 pnt X 64.8
D 10240 pnt X X 66.4

the second layer, these global highly responsive points have
the same semantics information with sampled points, even
when sampled points are at the junction of the two different
semantics. This is why global features can help sampled
points to better aggregate local features.

B.4. Visualization of Adaptive Sampling

When the input point cloud has a lot of noise, adaptive
sampling has the ability to ensure the distribution of the
sample point manifold. We give some examples of com-
parative visualization in Fig. 6 to prove the robustness of
the AS module. As can be seen from Fig. 6, AS module can
effectively reduce noise in the sample points and maintain
the shape of the sampled manifold.

B.5. Further Improvement of PointASNL

The result in manuscript only conducts a fair compar-
ison (same model structure and training strategy) against
appealing recent methods under the same setting of Point-
Net++ [11]. However, our PointASNL can still achieve
further improvement if we use other data pre-processing or
deeper structure.

As shown in Tab. 2, our PointASNL can still improve its
performance if we use grid sampling pre-processing, more
input points and deeper structure. As for the structure of
deeper PointASNL, we add an additional point local cell at
the end of each layer. Furthermore, by conducting ensemble

Table 3. Network Configurations.
Layer npoint nsample as neighbor mlp
Task Classification

1 512 32 12 [64,64,128]
2 128 64 12 [128,128,256]
3 1 - - [256,512,1024]

Task Segmentation
1 1024 32 8 [32,32,64]
2 256 32 4 [64,64,128]
3 64 32 0 [128,128,256]
4 36 32 0 [256,256,512]

learning with model from different training epochs, we can
finally achieve 66.6% on ScanNet benchmark.

B.6. Concrete Results

In this section, we give our detailed results on the S3DIS
(Tab.6 and Tab.7) and SemanticKITTI (Tab.8) dataset as a
benchmark for future work. ScanNet [1] is an online bench-
mark, the class scores can be found on its website. Further-
more, we provide more visualization results to illustrate the
performance of our model in complicated scenes.

C. Network Architectures

C.1. Layer Setting

For each encoder layer, it can be written as the follow-
ing form: Abstraction(npoint, nsample, as neighbor, mlp),
where npoint is the number of sampled points of layer.
nsample and as neighbor are number of group neighbors
in point local cell and AS module, and they share the same
k-NN query. mlp is a list for MLP construction in our layers
and used in both PL and PNL. Tab. 3 shows the configura-
tion of PointASNL on both classification and segmenttaion
tasks.

C.2. Loss Function

Like other previous works, we use cross entropy (CE)
loss in classification and part segmentation, and consider the
number of each category as weights in semantic segmenta-
tion. Furthermore, in order to avoid the sampled points be-
ing too close to each other in some local areas after the AS
module transformation, we also use Repulsion Loss [16] to
restrict the deformation of sampled point clouds. In partic-
ular, we only use this loss in the first layer since it has the
highest point density. The Repulsion loss does not bring
any performance improvement, but the training procedure
is significantly accelerated.

Altogether, we train the PointASNL in an end-to-end



Table 4. The running time on ModelNet40 and ScanNet datasets.

Dataset process input time (s/sample)
ModelNet40 Training 1024 pnt 0.00046

ScanNet Training 8192 pnt 0.17611
ModelNet40 Inference 1024 pnt 0.00024

ScanNet Inference 8192 pnt 0.11363

manner by minimizing the following joint loss function:

L(θ) = LCE + αLRep + β||θ||2,

LRep =

N∑
i=0

∑
i′∈N(xi)

w(||xi′ − xi||),
(1)

where θ indicates the parameters in our network, α = 0.01
balances the CE loss and Repulsion loss, and β denotes the
multiplier of the weight decay. For Repulsion loss, it pe-
nalizes the sampled point xi only when it is too close to its
neighboring points xi′ ∈ N(xi). w(r) = er

2/h2

is a fast-
decaying weight function and N is the number of sampled
points.

The Repulsion loss also ensures that each sample point
itself has a larger weight in the AS module in a relatively
constant density, which makes them cannot move too far.

C.3. Model Speeds

Tab. 4 shows the statistics of our models on different
datasets. Since our L-NL module only uses sampled points
as query points instead of the whole point cloud, the AS
module and NL cell can be both efficient and effective with
the bottleneck structures (only around 30% extra time).
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Table 5. Part segmentation performance with part-avaraged IoU on ShapeNetPart.

Method pIoU areo bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
phone board

#shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 286 66 152 5271
PointNet [10] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
SO-Net [6] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
PointNet++ [11] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [14] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
P2Sequence [8] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
PointCNN [7] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0
RS-CNN [9] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
PointASNL 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

Table 6. Semantic segmentation results on S3DIS dataset evaluated on Area 5.

Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [10] - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
PointCNN [7] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
PointWeb [17] 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
HPEIN [3] 87.2 68.3 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.7
PointASNL 87.7 68.5 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1

Table 7. Semantic segmentation results on the S3DIS dataset with 6-fold cross validation.

Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [10] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNet [2] - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0
A-CNN [4] 87.3 - 62.9 92.4 96.4 79.2 59.5 34.2 56.3 65.0 66.5 78.0 28.5 56.9 48.0 56.8
PointCNN [7] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
PointWeb [17] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
PointASNL 88.8 79.0 68.7 95.3 97.9 81.9 47.0 48.0 67.3 70.5 71.3 77.8 50.7 60.4 63.0 62.8

Table 8. Semantic segmentation results on the SemanticKITTI.
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PointNet [10] 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SPGraph [5] 17.4 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8
SPLATNet [12] 18.4 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0
PointNet++ [11] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
TangentConv [13] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
PointASNL 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9
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Figure 3. More examples on S3DIS datasets.
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Figure 4. More examples on ScanNet datasets.
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Figure 5. More examples on SemanticKITTI datasets.
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Figure 6. Visualized results of AS module. (a) Sampled points via farthest point sampling (FPS). (b) Sampled points ajusted by AS module.


