
A. Supplementary Material

A.1. 360­image Completion Module

Network Architecture We use the same network architec-

ture as in [49]. For simplicity, we remove the image warp-

ing process and the recurrent module.

Qualitative Results We show qualitative results in Fig-

ure 5.

A.2. 2D Layout Completion Module

Network Architecture The 2D layout module takes in par-

tial scan and output its 2D layout completion. This module

consists of two parts, feature extraction module and layout

completion module. The feature extraction module is re-

sponsible to convert observed partial scans into a partial 2D

feature grid. The layout completion module then takes in

such partial feature grid and hallucinate a complete layout.

The feature extraction module consist of two network works

together. The first is a PointNet-style network that operate

on point cloud input directly, the second network is a convo-

lutional image backbone for which we use ResNet18 with

ImageNet pre-trained weights. The feature from these two

networks are combined together to assign a feature for each

point. In order to project the 3D points into 2D grid, we si-

multaneously predict a floor plane (parameterized as plane

equation) using max pooled per-point feature. Using the

predicted floor plane equation, we can determine which 2D

cell one 3D point should rest in. In order to accommodate

the variation in height dimension, we further bin the height

axis into 4 bins at height h < −0.1m, −0.1m ≤ h ≤ 0.7m,

0.7m ≤ h ≤ 1.5m, 1.5m < h respectively. We average

pool the features inside each bin to get a 2D feature map

where only cell that has 3D points above it has feature (oth-

ers have all zero feature vector). Then we pass this feature

map through a convolutional encoder-decoder structure to

get final 2D layout prediction. Please refer to Figure 10a

for details.

Qualitative Results We show qualitative results in Figure

8.

A.3. Planar Patch Completion Module

Data Generation We estimate the ground truth plane

using the whole room point cloud. We use RANSAC

to estimate planes, and discard plane that has multiple

disconnected components. We also leverage the semantic

segmentation label available on point cloud to discard plane

that joins two points from different categories. Examples

of resulting plane estimation can be found at Figure 7. For

each perspective image, we render an index map that tells

which plane each pixel belongs to. The total planes we are

predicting consist of two parts: planes that appears in the

perspective image over certain threshold (500 pixels in our

experiments), and structural planes that consist of walls,

ceiling and floors.

Network Architecture The planar patch module firstly ex-

tracts partial point cloud derived from depth image and

then randomly sampled 8192 points as the input. To inte-

ger more information, we separated our network into two

branches. The first branch predicts the plane’s center and

normal showing in the partial point cloud. The second

branch predicts the room’s structural plane center and nor-

mal which might not show in the partial point cloud. In the

first branch, we use the PointNet-style network to predict a

point-wise output. Each point of output contains the pre-

dicted plane normal, relative distance to the plane center,

feature vector, and semantic label. In the second branch,

we use another PointNet-style network to directly predict

the structural plane normal and center. This branch capture

precise global information of room. Please refer to Figure

10b for details.

Qualitative Results We show qualitative results in Figure

6.

A.4. Local Relation Network

Network Architecture The input to our local relation

network is 16384 points where the first 8192 points belongs

to the source scan, and the later 8192 points belong to the

target scan. We have 10 feature channels as input in total:

we augment the xyz position with color, normal, and an 0,1

indicator indicates whether this point belongs to source or

target. The input goes through a PointNet-style network to

extract a per-point feature of dimension 1088. In order to

provide the feature more local information, we also added

an image branch similarly as in the 2D layout completion

network to extract a 32 dimension convolutional per point

feature. Then, using the sampled relations between source

and target, we concatenate the corresponding feature vector

(resulting a feature vector of 2*(1088+32) dimension) and

output a relation prediction after 3 layers of fully connected

layers. In addition to relation prediction, we also added

per point semantic segmentation task in order to equip the

feature with semantic information. We found adding the

semantic prediction task increase the relation prediction’s

average accuracy by 5%. Please refer to Figure 10c for

details.

Training details of local module. Randomly sampled pairs

have unbalanced distribution of relations. In order to reduce

the data in-balance, we manually force equal portion of re-

lations during training. We found this strategy works well

in practice.

Qualitative Results We show qualitative results in Figure

9.

A.5. Visualization of Feature Correspondences

We show the visualization of three representation’s cor-

respondences in Figure 11.
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Figure 5: 360 image completion results. First row is completed normal/depth, second row is ground truth.

Figure 6: Planar patch completion results. Each column shows one example. The first row is the input point cloud of network.

The second and third rows are two views of planar patch completion results. The red points in the figure show the ground

truth of plane center and the yellow points show the prediction of our network.

A.6. Details of Spectral Matching Module

In this section, we provide the technical details on the

definition of the consistency matrix used in spectral match-

ing. Specifically, consider two feature correspondences

(p1, p2) and (p′
1
, p′

2
). With pi, ni, and di we denote the

position, the normal, and the descriptor of pi, respectively.

Likewise, with p′

i, n
′

i, and d
′

i we denote the position, the

normal, and the descriptor of p′i, respectively. For each pair

(pi, p
′

i), we consider four geometric quantities that are in-

variant under rigid motions, i.e., one distance and three an-

gles:

li = ‖pi − p′

i‖,θi,1 = angle(ni,n
′

i)

θi,2 = angle(ni,
pi − p′

i

‖pi − p′

i‖
),θi,3 = angle(n′

i,
pi − p′

i

‖pi − p′

i‖
).

With this setup, we define the consistency score between

p1p
′

1
and p2p

′

2
as

c(p1p
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1
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′

2
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where γi, 1 ≤ i ≤ 5 are hyper-parameters to be learned

from data.



Figure 7: RANSAC plane fitting results. Left column is

room point cloud, right column is plane fitting visualization.

All points belongs to same plane are colored with the same

unique color.

Figure 8: Layout completion results. The left column is the

input scan, middle column is inferred layout completion.

The right column is ground truth.

Figure 9: Local module results. The first column is the two

input scans, where there is noticeable mis-alignment error.

The second column is visualization of detected geometric

relation. Blue: coplane, red: perpendicular, green: parallel.

The last column is the output of local module.

B. Additional Technical Details of The Train-

ing Procedure

In this section, we provide additional technical details on

the training procedure mentioned in the main paper.

Back-propagation through implicitly defined functions.

Training l4 requires us to compute the derivatives with re-

spect to the optimal solution to an objective function. Here

we represent a general formulation. Without losing gen-

erality, we assume we have an objective function f(x, α),
where α denotes its hyper-parameters and/or input param-

eters, and where x denotes the variables to be optimized.

Consider the optimal solution

x⋆(α) := argmin
x

f(x, α). (10)

Our goal is to compute the derivatives of x⋆ with respect

to α. To this end, notice that x⋆(α) is a critical point of f .

This means
∂f

∂x
(x⋆, α) = 0. (11)

Computing the derivatives of both sides of (11) to α. We

arrive at

∂2f

∂2x
(x⋆, α) ·

∂x⋆(α)

∂α
+

∂2f

∂x∂α
(x⋆, α) = 0.

In other words

∂x⋆(α)

∂α
= −

(

∂2f

∂2x

)

·
∂2f

∂xα
(12)

(12) allows us to optimize network parameters where the

objective function involves x⋆. Note that in this paper,

x⋆ ∈ R
6, so computing the second order derivatives are

manageable.

Training details.



(a) 2D layout completion module

(b) plane completion module

(c) local module

Figure 10: Network architectures for different modules.

360-image Completion Module We use the same setting as

[49] without image warping process and recurrent module.

Planar Patch Completion Module We trained the first

branch of network with 60 epochs and the second branch

with 30 epochs. The learning rate of both networks is

0.0002. 2D Layout Completion Module/Local Module We

train 60 epoch with initial learning rate 0.0002.

C. Additional Technical Details of the Experi-

mental Setup

Confusion matrix of the prediction module. Table 5

shows the confusion matrix of the prediction module. Note

that although the prediction module does not deliver ac-

curate predictions. However, since we maintain a broad

set of point-pairs, the predicted pairs still contain suffi-
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Figure 11: Visualization of correspondences on three representations. Each column contains one example. The first row

shows 360-image representation. The second row shows planar patch. The third row shows 2D-layout.

No-relation Co-planar Perpend. Parallel

No-relation 0.806 0.831 0.077 0.034

Co-planar 0.667 0.307 0.019 0.007

Perpend. 0.568 0.064 0.314 0.054

Parallel 0.628 0.065 0.006 0.301

Table 5: Confusion matrix of the prediction module.

cient constraints for regressing the underlying relative pose.

To extract correct relations, our approach utilizes robust

reweighted non-linear squares and the fact that we have an

initial pose to begin with, which also helps to prune wrong

predictions, e.g., points with similar normals but are pre-

dicted to be perpendicular.


