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FaceScape: a Large-scale High Quality 3D Face Dataset and

Detailed Riggable 3D Face Prediction

1. Animation
We recommend watching the supplementary video,

where the FaceScape dataset is briefly introduced and the
generated animations are shown. In the animation part, the
3D face model is predicted from a single wild image, then
is rigged to the expressions captured by FaceShift[7]. As
shown in the video, the face model predicted by our method
can be rigged to various expressions while recovers the dy-
namic details, such as the wrinkles caused by expressions.
We also use the same rigging parameters to drive 3 differ-
ent predicted models, and find that they appear different dy-
namic details. This is because these details are related to the
source subjects, not the rigging parameters.

2. Model Processing Details
The generation of topologically uniformed model has

been briefly introduced in Section 3.2 of the main paper.
Here we supplement a detailed description of model regis-
tration and displacement map generation.

Registration of base shape. We down-sample the raw
recovered mesh into rough mesh with fewer triangle faces,
namely base shape, and then build 3DMM for these simpli-
fied meshes. Firstly, the 2D landmarks are extracted from
the frontal image, then the corresponding 3D landmarks
are obtained by inverse-projection 2D landmarks. The Pro-
crustes transformation[3] is used to register all landmarks
to a standard 3D facial template with landmark annotations.
In this way, the pose and scale for all the scanned meshes
are roughly aligned to the standard facial template. Then
we use Non-rigid ICP[1] to register the standard template
mesh to scanned mesh in neutral expression. For scanned
meshes in other 19 expressions, similar to [2], the deforma-
tion transfer algorithm[5] is firstly used to deform the regis-
tered mesh in neutral expression to other expressions mim-
icking the deformation of a set of template meshes in cor-
responding expressions. Then the Non-rigid ICP[1] is used
to register these deformed individual-specific templates to
scanned meshes to fit the scans in non-neutral expressions
more accurately.

Displacement map generation. After obtaining the

topology-uniformed base shape, we use displacement maps
in UV space to represent middle and fine scale details that
are not captured by the base model due to the small num-
ber of vertices and faces. The most straightforward way to
compute the displacement map is to calculate the distance
from the surface of the registered model to the raw mesh.
However, we find that there will be artifacts in the displace-
ment map caused by the defects in the registration proce-
dure. Thus the raw scan is firstly smoothed with Lapla-
cian mesh smoothing. Then we trace the surface points of
base mesh corresponding to pixels in the displacement map,
and inverse-project the points to the raw mesh along nor-
mal direction to find its corresponding points. The pixel
value of the displacement map is set to the signed distance
from the point on raw mesh to its corresponding point on
the smoothed mesh.

3. Base Model Fitting

The base model fitting method has been briefly intro-
duced in Section 4.1 of the main paper. Here we provide a
detailed description of three parts in the objective function.

Landmark Alignment. Firstly the 2D landmarks L are
extracted from the image using an off-the-shelf facial land-
mark detector. Assuming the camera is weak perspective,
the landmark alignment term is defined as the distance be-
tween the detected 2D landmark L(k) and its corresponding
vertex projected on the image space:

Elan = ||(sR(Cr × wexp × wid)
(k) + t)− L(k)||22 (1)

where s is the scale factor of the weak perspective function,
R is the rotation matrix and t is the translation.

Pixel Level Consistency. The pixel-level reconstruction
term is used to match the geometry more accurately in the
regions where no feature points such as cheeks exists. Un-
der the assumption of Lambertian surfaces, we use the first
three bands of Spherical Harmonics(SH)[4] for illumina-
tion representation. The per-vertex albedo is represented as
a PCA model based on our dataset with albedo parameter
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Figure 1: Our multi-view system to reconstruct the high
quality detailed 3D face. We captured the data in two dif-
ferent places, so there are two frameworks shown as system
A and system B.

walb. The objective function is formulated as:

Epixel =
1

|V|
∑
q∈V
||Î(q)− I(q)||2 (2)

where V is the set of pixels corresponding to frontal vertices
of the fitted mesh, Î is the synthetic face, I is the input
image.

Regularization. We formulate the prior of identity, ex-
pression and albedo parameters as multivariate Gaussians
around the average of our dataset for regularization. The
final objective function is given by:

E = Elan + λ1Epixel + λ2Eid + λ3Eexp + λ4Ealb (3)

where Eid, Eexp and Ealb are the regularization terms of
expression, identity and albedo, respectively. λ1, λ2, λ3
and λ4 are the weights of different terms. We optimize the
parameters alternatively. Following [8], the vertex indices
corresponding to contour landmarks of the face are updated
after each iteration.

4. Facial Capture System
The capturing system has been briefly introduced in Sec-

tion 3.1 of the main paper. Here we supplement the pictures
of our system in Figure 1. The system consists of the 68
DSLR camera array, controlled lighting and a centralized
control sever.

5. More Results
More results are supplemented in Figure 5 as the exten-

sion of Figure 6 in our main paper. It shows that our results
recover 3D faces with photo-realistic details. The faces can
be further rigged to other expressions, and the details in the
new expressions are synthesized to make the rigged model
plausible.
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Figure 2: We use our recovered model for synthesizing im-
ages in another expression with detailed shading.
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Figure 3: Failure cases. In the left, our prediction cannot
recover the aquiline nose well, as this feature is not common
in our dataset. In the right, the wrong displacement map is
predicted due to occlusion.
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Figure 4: Predicted displacement maps using our method
and ground truth.

We supplement the comparison of the predicted and
ground-truth displacement maps in Figure 4 as the exten-
sion of Figure 7 in our main paper.

6. More Models

We show the 20 captured expressions for each subject in
Figure 6, and show more subjects in neutral expression in
Figure 7. The diversity of models in expression and iden-
tity dimensions ensures the quality of bilinear face model
generated on FaceScape dataset.



Figure 5: We show more results as the extension of Figure 6 in our main paper.



Figure 6: The 20 specified expressions which the subjects
are asked to perform.

7. Photo-realistic Image Synthesis

Similar to [6, 2], given a facial image, our bilinear model
can be used to synthesize images in other expressions.
Specifically, we use the base model fitting method to es-
timate the face model. Then we change the expression pa-
rameter to generate the face model in the target expression
and warp the image pixels guided by translations of vertices
on the 3D face model. The details caused by the expres-
sion changing are further synthesized by adjusting the pixel
shading. New pixel value is calculated based on the new
normal from the predicted displacement map and estimated
illumination in model fitting procedure. The synthesized
images are shown in Figure 2.

8. Failure Case

We show some failure cases of our method in Figure 3.
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