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1. Proof of Theorem 4

Proof. Here we prove Theorem 4 in the main document.
Recall the weighted least squares optimization for shape re-
construction in eq. (11) and denote its objective function as
f(c,R, t), with c = [c1, . . . , ck]T:
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In order to marginalize out the translation t, we compute the
derivative of f(c,R, t) w.r.t. t:
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and set it to 0, which allows us to write t? in closed form
using R? and c?:
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with z̄w and B̄w
k , k = 1, . . . ,K, being the weighted centers

of the 2D landmarks Z and the 3D basis shapes Bk:
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Then we can substitute the expression of t? in (A3) back
into the objective function in (A1) and obtain an objective

function without translation:
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Lastly, by defining:

z̃i =
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), (A6)

B̃ki =
p
wi(Bki � B̄w

), k = 1, . . . ,K (A7)

we can see the equivalence between the objective function
in eq. (A5) and the objective function in eq. (12) of Theo-
rem 4. The constraints remain unchanged because we only
marginalize out the unconstrained variable t. Therefore,
the shape reconstruction problem (11) is equivalent to the
translation-free problem (12), and the optimal translation
can be recovered using eq. (A3).

2. Proof of Proposition 6

Proof. Here we prove the SOS relaxation of order � (� �
2) for the translation-free shape reconstruction problem (12)
is the semidefinite program in (20). First, let us rewrite the
general form of Lasserre’s hierarchy of order � in eq. (8) in
Theorem 3 as the following:

max � (A8)
s.t. f(x)� � = h+ g,

h 2 hhi2� ,
g 2 Q�(g).

In words, the constraints of (A8) ask the polynomial f(x)�
� to be written as a sum of two polynomials h and g, with h
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in the 2�-th truncated ideal of h, and g in the �-th truncated
quadratic module of g.

Next, we use the definition of the 2�-th truncated ideal
and the �-th truncated quadratic module to explicitly repre-
sent h and g. First recall the definition of the 2�-th trun-
cated ideal in eq. (5), which states that h must be written
as a sum of polynomial products between the equality con-
straints hi’s and the polynomial multipliers �i’s:

h =

15X
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�ihi, (A9)

and the degree of each polynomial product �ihi must be
no greater than 2�, i.e., deg(�ihi)  2�. In the translation-
free shape reconstruction problem, because all the 15 equal-
ity constraints in eq. (17) (arising from R 2 SO(3)) have
degree 2, the degree of the polynomial multipliers must be
at most 2� � 2, i.e., deg(�i)  2� � 2. Therefore, we can
parametrize each �i using [x]2��2, the vector of monomials
up to degree 2� � 2:

�i = �T
i [x]2��2, �i 2 RN� , N� =
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⌘
, (A10)

with �i being the vector of unknown coefficients associated
with the monomial basis [x]2��2. The size of �i is equal
to the length of [x]2��2, which can be computed by

�
n+d
d

�
,

with n = K + 9 being the number of variables in x, and
d = 2� � 2 being the maximum degree of the monomial
basis. Similarly for g, we recall the definition of the �-th
truncated quadratic module in eq. (7), which states that g
must be written as a sum of polynomial products between
the inequality constraints gk’s and the SOS polynomial mul-
tipliers sk’s:

g =

2KX

k=0

skgk, (A11)

and the degree of each polynomial product skgk must be
no greater than 2�, i.e., deg(skgk)  2�. For our spe-
cific shape reconstruction problem, we have g0 := 1, gk =

ck, k = 1, . . . ,K, and gK+k = 1 � c2k, k = 1, . . . ,K.
Since g0 has degree 0, s0 can have degree up to 2�. All
gk, k = 1, . . . ,K, have degree 1, so sk, k = 1, . . . ,K, can
have degree up to 2� � 1. However, because SOS polyno-
mials can only have even degree, sk, k = 1, . . . ,K can only
have degree up to 2� � 2. For gK+k, k = 1, . . . ,K, they
have degree 2, so their corresponding SOS polynomial mul-
tipliers sK+k, k = 1, . . . ,K can have degree up to 2� � 2.
Now for each SOS polynomial sk, k = 0, . . . , 2K, from
the Gram matrix representation in eq. (2), we can associate
a PSD matrix Sk with it using corresponding monomial
bases:
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Finally, by inserting the expressions of sk in (A12) back
to the expression of g in (A11), and inserting the expres-
sion of �i in (A10) back to the expression of h in (A9), we
can convert the SOS relaxation of general form (A8) to the
semidefinite program (20).

3. Proof of Theorem 8

Proof. According to [4], the dual SDP of (20) is the follow-
ing SDP:

min
y

Ly(f) (A13)

s.t. M�(y) ⌫ 0, (A14)
M��vk(gky) ⌫ 0, (A15)
M��ui(hiy) = 0, (A16)

y0 = 1, (A17)

where y 2 RN2� , N2� =
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is a vector of mo-

ments for a probability measure supported on X defined by
the equalities hi and inequalities gk; Ly(f) =

P
↵ f↵y↵

is a linear function of y, where f↵ is the coefficient of
f(x) associated with monomial x↵, and y↵ is the mo-
ment of the monomial x↵ w.r.t. the probability measure;
M�(y) 2 RN� , N� =

⇣
K+9+�

�

⌘
is the moment ma-

trix of degree � that assembles all the moments in y;
M��vk(gky), vk = ddeg(gk)/2e, is the localizing matrix
that takes some moments from the moment matrix M�(y)
and entry-wise multiply them with the inequality gk (cf. [4]
for more details); M��ui(hiy), ui = ddeg(hi)/2e is the
localizing matrix that takes some moments from the mo-
ment matrix and entry-wise multiply them with the equality
hi. Due to strong duality of the primal-dual SDP, we have
complementary slackness:

S�?
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at global optimality of the SDP pair. Since corank(S�?
0

) =

1, then according to Theorem 5.7 of [4], we have
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original shape reconstruction problem (12). Further, as
rank

⇣
M?

�

⌘
= 1, M?

� = v?
(v?

)
T where v?

= [x?
]�

and x? is the unique global minimizer of the original prob-
lem (12). However, the fact that S�?
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T implies:
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and v? is in the null-space of S�?
0

. Therefore, the solution
extracted using Proposition 7 is also the unique global min-
imizer of problem (12).



4. Derivation of Proposition 9

Here we show the intuition for using the basis reduc-
tion in Proposition 9. In the original SOS relaxation (20),
the parametrization of the SOS polynomial multipliers
sk, k = 0, . . . , 2K, and the polynomial multipliers �i, i =
1, . . . , 15, uses the vector of all monomials up to their cor-
responding degrees (cf. (A10) and (A12)), which leads to an
SDP of size N0 =

⇣
K+9+�

�

⌘
that grows quadratically with

the number of basis shapes K. In basis reduction, we do not
limit ourselves to the vector of full monomials, but rather
parametrize s0, sk and �i with unknown monomials bases
v0[x], vs[x] and v�[x], which allows us to rewrite (21) as:

f(x)� � =
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with the hope that v0[x] ✓ [x]2, vs[x] ✓ [x]1 and v�[x] ✓
[x]2 have much smaller sizes (we limit ourselves to the case
of � = 2, at which level the relaxation is empirically tight).

As described, one can see that the problem of finding
smaller v0[x], vs[x] and v�[x], while keeping the relaxation
empirically tight, is highly combinatorial in general. There-
fore, our strategy is to only consider the following case:

(i) Expressive: choose v0[x] such that s0 contains all the
monomials in f(x)� �,

(ii) Balanced: choose vs[x] and v�[x] such that the sum
s0+

P
skgk+

P
�ihi can only have monomials from

f(x)� �.

In words, condition (i) ensures that the right-hand side
(RHS) of (A20) contains all the monomials of the left-
hand side (LHS). Condition (ii) asks the three terms of the
RHS, i.e., s0,

P
skgk and

P
�ihi, to be self-balanced in

the types of monomials. For example, if s0 contains extra
monomials that are not in the LHS, then those extra mono-
mials better appear also in

P
skgk and/or

P
�ihi so that

they could be canceled by summation. Under these two
conditions, it is possible to have equation (A20) hold1.

The choices in both conditions depend on analyzing the
monomials in f(x) � �. Recall the expression of f(x)
in (12) and the expression qi(x) in (16) for each term in-
side the summation, it can be seen that f(x) only contains

1Whether or not these are sufficient or necessary conditions remains
open. However, leveraging Theorem 8 we can still check optimality a pos-
teriori.

the following types of monomials:

1 (A21)
ck, 1  k  K (A22)

ckrj , 1  k  K, 1  j  9 (A23)
ck1ck2rj1rj2 , 1  k1  k2  K, 1  j1  j2  9 (A24)

and the key observation is that f(x) does not contain
degree-4 monomials purely in c or r, i.e., ck1ck2ck3ck4

and rj1rj2rj3rj4 , or any degree-3 monomials in c and r.
Therefore, when choosing v0[x], we can exclude degree-2
monomials purely in c and r from [x]2, and set v0[x] =

m2(x) = [1, cT, rT, cT ⌦ rT]T2 as stated in Proposition 9.
This will satisfy the expressive condition (i), because s0 =

m2[x]TS0m2[x] can have the following monomials:

1, ck, ckrj , ck1ck2rj1rj2 (A25)
rj , ck1ck2 , rj1rj2 , ck1ck2rj , ckrj1rj2 (A26)

and those in (A25) cover the monomials in f(x). Replacing
[x]2 with v0[x] = m2(x) is the key step in reducing the
size of the SDP, because it reduces the size of the SDP from�
K+11

2

�
to 10K + 10, i.e., from quadratic to linear in K.

In order to satisfy condition (ii), when choosing vs[x]
and v�[x], the goal is to have the product between sk, �i

and gk, hi result in monomials that appear in f(x) � �,
and ensure that monomials that do not appear in the latter
can simplify our in the summation. For example, as stated
in Proposition 9, we choose vs[x] = [r]1 = [1, rT]T and
sk will contain monomials 1, rj and rj1rj2 . Because gk’s
have monomials 1, ck and c2k, we can see that

P
skgk will

contain the following monomials:

1, ck, rj1rj2c
2

k, (A27)
c2k, rj , rjc

2

k, rj1rj2 , rj1rj2ck, (A28)

This still satisfies the balanced condition, because mono-
mials of

P
skgk in (A27) balance with monomials of s0

in (A25), and monomials of
P

skgk in (A27) balance with
monomials of s0 in (A26). Similarly, choosing v�[x] = [c]2
makes �i have monomials 1, ck and ck1ck2 , and because
hi’s have monomials 1, rj and rj1rj2 , we see that

P
�ihi

contains the following monomials:

1, ck, ckrj , ck1ck2rj1rj2 , (A29)
rj , rj1rj2 , ckrj1rj2 , ck1ck2 , ck1ck2rj , (A30)

which balance with monomials in s0 from (A25) and (A26).
We remark that we cannot guarantee that the SOS relax-

ation resulting from basis reduction can achieve the same
performance as the original SOS relaxation and we can-
not guarantee our choice of basis is “optimal” in any sense.

2A more rigorous analysis should follow the rules of Newton Poly-
tope [3], but the intuition is the same as what we describe here.



Therefore, in practice, one needs to check the solution and
compute corank(S2?

0
) and ⌘2 to check the optimality of the

solution produced by (25). Moreover, it remains an open
problem to find a better set of monomials bases to achieve
better reduction (e.g., knowing more about the algebraic ge-
ometry of gk and hi could possibly enable using the stan-
dard monomials as a set of bases [3]).

5. Derivation of Algorithm 1

For a complete discussion of graduated non-convexity
and its applications for robust spatial perception, please
see [6].

In the main document, for robust shape reconstruction,
we adopt the TLS shape reconstruction formulation:

min
ck�0,

k=1,...,K
t2R2,R2SO(3)

NX

i=1

⇢c̄ (ri(ck,R, t)) + ↵
KX

k=1

ck (A31)

where ri(ck,R, t) :=

���zi�⇧R
⇣PK

k=1
ckBki

⌘
�t
��� is

called the residual, and ⇢c̄(r) = min(r2, c̄2) implements
a truncated least squares cost. Recalling that ⇢c̄(r) =

min(r2, c̄2) = minw2{0,1} wr
2
+(1�w)c̄2, we can rewrite

the TLS shape reconstruction as a joint optimization of
(c,R, t) and the binary variables wi’s, as in eq. (28) in
the main document. However, as hinted in the main doc-
ument, due to the non-convexity of the TLS cost, directly
solving the joint problem or alternating between solving for
(c,R, t) and binary variables wi’s would require an initial
guess and is prone to bad local optima.

The idea of graduated non-convexity (GNC) [2] is to in-
troduce a surrogate function ⇢µc̄ (r), governed by a control
parameter µ, such that changing µ allows ⇢µc̄ (r) to start from
a convex proxy of ⇢c̄(r), and gradually increase the amount
of non-convexity till the original TLS function ⇢c̄(r) is re-
covered. The surrogate function for TLS is stated below.

Proposition A1 (Truncated Least Squares (TLS) and GNC).
The truncated least squares function is defined as:

⇢c̄(r) =

(
r2 if r22[0,c̄2]

c̄2 if r22[c̄2,+1)
, (A32)

where c̄ is a given truncation threshold. The GNC surrogate
function with control parameter µ is:

⇢µc̄ (r) =

8
><

>:
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µ+1 c̄

2
]

2c̄|r|
p

µ(µ+1)�µ(c̄2+r2) if r22[ µ
µ+1 c̄

2,µ+1
µ c̄2]

c̄2 if r22[µ+1
µ c̄2,+1)

.(A33)

By inspection, one can verify ⇢µc̄ (r) is convex for µ ap-
proaching zero ((⇢µc̄ (r))00 = �2µ ! 0) and retrieves ⇢c̄(r)
in (A32) for µ ! +1. An illustration of ⇢µc̄ (r) is given in
Fig. A1.

The nice property of the GNC surrogate function is that
when µ is close to zero, ⇢µc̄ is convex, which means the only
non-convexity of problem (A31) comes from the constraints
and can be relaxed using the SOS relaxations.

For the GNC surrogate function ⇢µc̄ , the simple trick of in-
troducing binary variables (⇢c̄(r) = minw2{0,1} wr

2
+(1�

w)c̄2) would not work. However, Black and Rangarajan [1]
showed that this idea of introducing an outlier variable3 can
be generalized to many robust cost functions. In particular,
for the GNC surrogate function, we have the following.

Theorem A2 (Black-Rangarajan Duality for GNC surrogate
TLS). The GNC surrogate TLS shape reconstruction:

min
ck�0,

k=1,...,K
t2R2,R2SO(3)

NX

i=1

⇢µc̄ (ri(ck,R, t)) + ↵
KX

k=1

ck (A34)

with ⇢µc̄ (r) defined in (A33), is equivalent to the following
optimization with outlier variables wi’s:

min
ck�0,

k=1,...,K
t2R2,R2SO(3)

wi2[0,1],i=1,...,N

NX

i=1

⇥
wir

2

i (ck,R, t) + �
µ
c̄ (wi)

⇤
+ ↵

KX
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ck (A35)

where �
µ
c̄ (wi) is the following outlier process:

�
µ
c̄ (wi) =

µ(1� wi)

µ+ wi
c̄2. (A36)

Proof. The derivation of �
µ
c̄ (wi) in (A36) follows the

Black-Rangarajan procedure in Fig. 10 of [1].

In words, the Black-Rangarajan duality allows us to
rewrite the non-convex shape reconstruction problem as a
joint optimization in (c,R, t) and outlier variables wi’s.
The interested readers can find closed-form outlier pro-
cesses for many other robust cost functions in the original
paper [1].

Leveraging the Black-Rangarajan duality, for any given
choice of the control parameter µ, we can solve prob-
lem (A35) in two steps: first we solve (c,R, t) using Shape?

with fixed weights wi’s, and then we update the weights
with fixed (c,R, t). In particular, at each iteration ⌧ (cor-
responding to a given control parameter µ), we perform the
following:

1. Variable update: minimize (A35) with respect to

3w can be thought of an outlier variable: when w = 1, the measure-
ment is an inlier, when w = 1, the measurement is an outlier.



(c,R, t), with fixed weights w(⌧�1)

i :

c(⌧)k ,R(⌧), t(⌧) =

argmin
ck�0,

k=1,...,K
t2R2,R2SO(3)

NX

i=1

w(⌧�1)

i r2i (ck,R, t) + ↵
KX

k=1

ck, (A37)

where we have dropped the term
PN

i=1
�

µ
c̄ (wi) be-

cause it is independent from (c,R, t). This problem
is exactly the weighted least squares problem (11) and
can be solved using Shape? (cf. line 4 in Algorithm 1).
Using the solutions (c(⌧)k ,R(⌧), t(⌧)), we can compute
the residuals r(⌧)i (cf. line 5 in Algorithm 1).

2. Weight update: minimize (A35) with respect to wi,
with fixed residuals r(⌧)i :

w(⌧)
i = argmin

wi2[0,1],i=1,...,N

NX

i=1

(r(⌧)i )
2wi + �

µ
c̄ (wi), (A38)

where we have dropped
PK

k=1
c(⌧)k because it is a con-

stant for the optimization. This optimization, fortu-
nately, can be solved in closed-form. We take the gra-
dient of the objective function with respect to wi:

rwi = (r(⌧)i )
2
+rwi�

µ
c̄ (wi)

= (r(⌧)i )
2 � µ(µ+1)

(µ+wi)
2 c̄2 (A39)

and observe that rwi = (r(⌧)i )
2� µ+1

µ c̄2 when wi = 0,

and rwi = (r(⌧)i )
2 � µ

µ+1
c̄2 when wi = 1. Therefore,

the global minimizer w?
i := w(⌧)

i is:

w
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>>>:

0 if (r(⌧)i )2 2
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µ+1 c̄
2, µ+1

µ c̄2
i

1 if (r(⌧)i )2 2
h
0, µ

µ+1 c̄
2
i

. (A40)

and this is the weight update rule in line 6 of Algo-
rithm 1.

After both the variables and weights are updated using
the two-stage approach described above, we increase the
control parameter µ to increase the non-convexity of the
surrogate function ⇢µc̄ (cf. line 10 of Algorithm 1). At the
next iteration ⌧ + 1, the updated weights are used to per-
form the variable update. The iterations terminate when
the change in the objective function becomes negligible
(cf. line 8 of Algorithm 1) or after a maximum number of
iterations (cf. line 3 of Algorithm 1). Note that all weights
are initialized to 1 (cf. line 1 in Algorithm 1), which means
that initially all measurements are tentatively accepted as
inliers, therefore no prior information about inlier/outlier is
required.

c̄

c̄2

Figure A1: Graduated Non-Convexity (GNC) with control
parameter µ for the Truncated Least Squares (TLS) cost.

6. FG3DCar Qualitative Results

Fig. A2 shows 9 full qualitative results comparing the
performances of Altern+Robust [7], Convex+Robust [7] and
Shape# on the FG3DCar [5] dataset under 10% to 70%

outlier rates. One can further see that the performance
of Shape# is sensitive to 70% outliers, while the perfor-
mances of Altern+Robust and Convex+Robust gradually de-
grade and fail at 50% to 60% outliers.
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Figure A2: Qualitative results on the FG3DCar dataset [5] under 10 � 70% outlier rates using Altern+Robust [7], Con-
vex+Robust [7], and Shape#. Yellow: shape reconstruction result projected onto the image. Green: inliers. Red: outliers.
Circle: 3D landmark. Square: 2D landmark. [Best viewed electronically.]
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Figure A2: Qualitative results on the FG3DCar dataset [5] under 10 � 70% outlier rates using Altern+Robust [7], Con-
vex+Robust [7], and Shape#. Yellow: shape reconstruction result projected onto the image. Green: inliers. Red: outliers.
Circle: 3D landmark. Square: 2D landmark. (cont.) [Best viewed electronically.]
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Figure A2: Qualitative results on the FG3DCar dataset [5] under 10 � 70% outlier rates using Altern+Robust [7], Con-
vex+Robust [7], and Shape#. Yellow: shape reconstruction result projected onto the image. Green: inliers. Red: outliers.
Circle: 3D landmark. Square: 2D landmark. (cont.) [Best viewed electronically.]
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