
IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning
Supplementary Materials

Xi Yang1 Ding Xia1,2 Taichi Kin1 Takeo Igarashi1

1The University of Tokyo 2South China University of Technology

1. Data Processing Details
1.1. 3D surface reconstruction

We show a step-by-step instruction with screenshots us-
ing Amira as follows.

1. Import a set of MRA images, and use the function
“Isosurface” to create a surface model from MRA im-
ages.

2. Adjust the threshold of isosurface to generate the de-
tails you want of the surface model.

3. Use the function “Volume Edit” to refine the generated
model.

4. Choose “Cut: Inside” to remove the parts.

1.2. Aneurysm restoration

Since the pixel values are different in MRA at each lo-
cation of thick blood vessels, thin blood vessels, and turbu-
lent flow, it is impossible to extract an accurate blood ves-
sel model with the single threshold method [5]. Thus, the
multi-threshold method is proposed as follows [6]:

1. Rendering the surface of the aneurysm and coarse area
of surrounding blood vessels from MRA with the sin-
gle threshold method.

2. Rendering the surface with a threshold value differ-
ent from step 1 for unrendered areas, e.g. a part of the
aneurysm.

3. The threshold value X% of SImax was calculated
from the following equation 1. We use X = 50 in



this paper. Here, SImax is the signal intensity maxi-
mum of a blood vessel, and SIbg is the signal intensity
of the background level.

X% of SImax = SIbg +
(SImax − SIbg)

100
×X (1)

4. Repeating step 2 as many times as necessary to com-
plete the aneurysm model.

1.3. Data clean

Uncleaned data is feasible for voxel-based and points-
based methods. However, the mesh-based method
(MeshCNN) requires manifold surfaces. We use MeshLab
v0.3.2 [2] and Blender 2.8.0 [1] to clean the data, the details
as follows. MeshLab can check them as the description of
MeshLab 2.Render.

• MeshLab

1. Filters→ Clean and Repairing→
– Remove Duplicate Faces
– Remove Duplicated Vertex
– Remove Faces from Non Manifold Edges
– Remove Isolated pieces (wrt. Diameter)

with value 100
2. Render→

– Show Non Manif Edges
– Show Non Manif Vertices

• Blender

1. Import obj files
2. Select Edit mode
3. Select vertex→ Rip Vertices
4. Select edge→ Edge Split
5. Press G→ move vertices to optimal positions

2. Dataset Organization
According to the submission requirements (maximum

100MB), we do not include the data into supplemen-
tary materials. Our data and codes can be accessed at
https://github.com/intra3d2019/IntrA.

2.1. Data

Our dataset is organized as follows. The complete mod-
els are recorded as OBJ files. The annotated and generated
models have two formats: OBJ and AD. The AD file con-
sists of point position (3), normal (3), and segmentation la-
bel (1) of each line. The label 0, 1, 2 denote parent vessel,
aneurysm, and boundary line, respectively. In our segmen-
tation experiments, we assigned boundary line points (label
2) into the aneurysm (label 1) to conduct binary segmenta-
tion.

• annotated

* ad
* obj
* geo

• generated

– aneurysm

∗ ad
∗ obj

– vessel

∗ ad
∗ obj

• complete

2.2. Tools

• Annotation

– annotation/main.py

• Vessel segment generation

– random pick.py
– selection.py

• Visualization

– show ann data.py
– show result.py

3. Experimental Details for Benchmarks
We implemented the data loader to fulfill the default in-

put requirements of every method, including normal infor-
mation and data augmentation. The number of categories
is reduced to 2 for classification. We recorded results when
the networks reach the best IOU of parent vessels, the best
IOU of aneurysms, the best DSC of parent vessels, and the
best DSC of aneurysms, respectively. The network mod-
els that have the best IOU of aneurysms were selected for
comparison in our paper.

SO-Net [8] (Pytorch) The hyper-parameters and settings
of SO-Net for segmentation and classification are the same
as that for training ShapeNet. The optimizer of the en-
coder, segmenter, and classifier is Adam. The learning rate
is 10−3. We trained each network for up to 401 epochs,
with batch size 8.

PointConv [13] (TensorFlow) We used the hyper-
parameters originally for ScanNet. For training, we used
501 epochs and batch size 4, with Adam optimizer and
learning rate starting from 10−3.

PointNet++ & PointNet [11, 10] (Pytorch) for segmen-
tation. The hyper-parameters were for training ShapeNet.
We used batch size 8 and learning rate 10−3, and trained
models for 201 epochs with Adam as the optimizer.

https://github.com/intra3d2019/IntrA
https://github.com/lijx10/SO-Net
https://github.com/DylanWusee/pointconv
https://github.com/yanx27/Pointnet_Pointnet2_pytorch


Figure 1: Two examples of mis-classified aneurysm seg-
ments.

(TensorFlow) for classification. We used 181 epochs for
training with batch size 8 and learning rate 10−3. The opti-
mizer of the model is Adam.

PointNet++g (Pytorch) We adapted the PointNet++
model for segmentation by adding geometry information.
The geodesic distance was used as the metric to replace the
original Euclidean distance, in the ball query function and
the normalization of pre-processing for the point cloud.

PointCNN [9] (TensorFlow) We took the segmentation
architecture of ShapeNet. The batch size was 4, and the to-
tal epoch was 1024. Adam was used as the optimizer, and
the learning rate started from 5 × 10−3 to 10−5.The archi-
tecture of classification was for ModelNet. In the training
of our dataset, the total epoch was 1024, and the learning
rate decreased from 5 × 10−3 to 10−6. The optimizer we
used was also Adam. However, the batch size was 128.

MeshCNN [4] (Pytorch) We used the same pooling res-
olutions (1800, 1350, 600) with the setting of segmentation
architecture for 2250 edges, then modified that as (1200,
800, 300) for 1500 edges and (600, 450, 180) for 750 edges.
The batch size was 12, with 200 epoch, and the learning rate
was 10−3 for Adam.

SpiderCNN [14] (TensorFlow) Both segmentation and
classification codes were for ShapeNet, and the optimizers
were Adam. The main difference was that the segmentation
model trained for 501 epochs with batch size 8, while the
classification part was 151 epochs with batch size 16.

SSCN [3] (Pytorch) These models were designed for
ShapeNet. We trained the model for 400 epochs with batch
size 16. The optimizer of the model was SGD (momentum

Figure 2: Classification results of networks. These methods
are compared with their best performance.

0.9), and the learning rate was 10−1.
PointGrid [7] (TensorFlow) The architecture of Point-

Grid was for ShapeNet. We trained the model with batch
size 32 and 200 epochs. The optimizer was Adam, and the
learning rate was 10−4.

DGCNN [12] (Pytorch) The model was trained by batch
size 16 and epoch 200. The optimizer used SGD (momen-
tum 0.9) with learning rate 10−1. We removed the ‘trans-
lation’ in the data augmentation because when it was used,
we obtained poor performance on our dataset.

4. More Experimental Results
Two misclassified aneurysm segments are shown in Fig-

ure 1 and the reason is explained in Section 5.1 of the paper.
Figure 2 demonstrates detailed information of the classifica-
tion results for each fold, including blood vessel accuracy,
aneurysm accuracy, and F1-score.

https://github.com/charlesq34/pointnet2
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yangyanli/PointCNN
https://github.com/ranahanocka/MeshCNN
https://github.com/xyf513/SpiderCNN
https://github.com/facebookresearch/SparseConvNet
https://github.com/trucleduc/PointGrid
https://github.com/WangYueFt/dgcnn


SO-Net

PointConv

PN++g

PN++

MeshCNN

Figure 3: Segmentation results of five networks counted by
the size ratio of aneurysms.

10 representative results of five networks are presented
in the Figure 4.We transformed the result of MeshCNN
into point clouds. The first 2 rows are good results from
these methods. The second part contains segments with
aneurysms close to arteries, which can cause an unclean
segmentation. We noticed that SO-Net (third row) has
aneurysm points on the parent vessel part, and PN++ (fourth
row) has parent vessel points on the aneurysm part, which
is the result of omitting geodesic information. In the third
part, we add four poor results caused by small aneurysms.
Finally, we provide two uncommon cases in the last part.

Since the diameter of the aneurysm has an important
value for diagnosis, we also count the segmentation results

of five networks according to the size ratio of aneurysms as
shown in Figure 3. Unsatisfactory segmentation on small
size ratio aneurysms can be confirmed.

5. Statement
This study was approved by the Research Ethics Com-

mittee of The University of Tokyo.



Good segmentation

Examples that arteries are close to the aneurysm

Small size ratio aneurysms

Uncommon cases

Goundtruth SO-Net PointConv PN++g PN++ MeshCNN

Figure 4: Results comparison of five networks.



References
[1] Blender. https://www.blender.org/. 2
[2] MeshLab. http://www.meshlab.net/. 2
[3] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9224–9232, 2018. 3

[4] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Transactions on Graphics (TOG), 38(4):90,
2019. 3

[5] Romhild M Hoogeveen, Chris JG Bakker, and Max A
Viergever. Limits to the accuracy of vessel diameter mea-
surement in mr angiography. Journal of Magnetic Resonance
Imaging, 8(6):1228–1235, 1998. 1

[6] Taichi Kin, Hirofumi Nakatomi, Masaaki Shojima, Minoru
Tanaka, Kenji Ino, Harushi Mori, Akira Kunimatsu, Hiroshi
Oyama, and Nobuhito Saito. A new strategic neurosurgical
planning tool for brainstem cavernous malformations using
interactive computer graphics with multimodal fusion im-
ages. Journal of neurosurgery, 117(1):78–88, 2012. 1

[7] Truc Le and Ye Duan. Pointgrid: A deep network for 3d
shape understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9204–
9214, 2018. 3

[8] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-
organizing network for point cloud analysis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 9397–9406, 2018. 2

[9] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Sys-
tems, pages 820–830, 2018. 3

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652–660,
2017. 2

[11] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 2

[12] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 38(5):146, 2019. 3

[13] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9621–9630, 2019. 2

[14] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 87–102, 2018.
3

https://www.blender.org/
http://www.meshlab.net/

