
Learning Texture Transformer Network for Image Super-Resolution
Supplementary Material

Fuzhi Yang1∗, Huan Yang2, Jianlong Fu2, Hongtao Lu1, Baining Guo2

1Department of Computer Science and Engineering,
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University,

2Microsoft Research, Beijing, P.R. China,
{yfzcopy0702, htlu}@sjtu.edu.cn, {huayan, jianf, bainguo}@microsoft.com

In this supplementary material, Section 1 illustrates the
details of TTSR’s network structure. Section 2 provides ad-
ditional analyses about the texture transformers on different
scales. Section 3 describes the comparison of the running
time and the parameter number. Finally, more visual com-
parison results will be shown in Section 4.

1. Details of Network Structure
In this section, we will illustrate the detailed network

structure of our approach TTSR, including the learnable
texture extractor in the texture transformer, the generator
with three stacked texture transformers and the discrimina-
tor. The structure of the learable texture extractor is shown
in Table 1, in which the layers $0, $3 and $6 are used
to search and transfer texture features in the texture trans-
former. Table 2 shows the details of the generator, and Ta-
ble 3 illustrates the discriminator.

2. Texture Transformers on Different Scales
Our proposed TTSR contains three stacked texture trans-

formers. The texture transformer at each scale fuses HR tex-
ture features of different levels from the Ref image. Here
we conduct experiments of using the texture transformers
on different scales. The model here is without CSFI since
CSFI is designed for multi-scale stacked texture transform-
ers. Table 4 shows the results. The larger scale the texture
transformer is applied at, the more performance it brings,
which demonstrates that the texture features at a larger scale
have a less loss of details. When we gradually add the tex-
ture transformers at other scales, the performance can be
further improved.

3. Running Time and Model Size
In this section, the running time and the model size

of TTSR will be discussed. We compare the proposed

∗This work was performed when the first author was visiting Microsoft
Research as a research intern.

Table 1. Network structure of the learnable texture extractor.
Conv(Nin, Nout) indicates the convolutional layer with Nin in-
put channels and Nout output channels. The kernel size is 3 × 3
for all convolutional layers. Pool(2× 2) is the 2× 2 pooling layer
with stride 2.

Id Layer Name
0 Conv(3,64), ReLU
1 Conv(64,64), ReLU
2 Pool(2× 2)
3 Conv(64,128), ReLU
4 Conv(128,128), ReLU
5 Pool(2× 2)
6 Conv(128, 256), ReLU

TTSR with state-of-the-art SISR and RefSR approaches,
RCAN [5], RSRGAN [4], CrossNet [8] and SRNTT [7].
For running time, all approaches are run on a Tesla V100
PCIe GPU and tested on an 83 × 125 × 3 LR input image
with the up-sampling factor of 4×. Table 5 shows the com-
parison results. Specifically, the stacked texture transform-
ers cost 0.037s and the other parts cost 0.059s, and TTSR
takes a total time of 0.096s. The results show that TTSR
achieves the best performance with a relatively small pa-
rameter number and running time.

4. More Visual Comparison
In this section, we show more comparison results among

the proposed TTSR and other SR methods, including
RDN [6], RCAN [5], RSRGAN [4], CrossNet [8] and
SRNTT [7]. RCAN has achieved state-of-the-art perfor-
mance on both PSNR and SSIM in recent years and RSR-
GAN is considered to achieve the state-of-the-art visual
quality. CrossNet and SRNTT are two state-of-the-art
RefSR approaches which significantly outperform previ-
ous RefSR methods. The visual comparison results on
CUFED5 [7], Sun80 [3], Urban100 [1] and Manga109 [2]
are shown in Figure 1-4, Figure 5-6, Figure 7-8 and Fig-
ure 9-10, respectively.

Table 2. Network structure of the generator. Conv(Nin, Nout) indicates the convolutional layer with Nin input channels and Nout output
channels. The kernel size is 3 × 3 for all convolutional layers except that the last convolution uses 1 × 1 kernel. RB denotes the residual
block without batch normalization layers and the ReLU layer after the skip connection. TT represents the texture transformer and PS is the
2× pixel shuffle layer. ↑ indicates bicubic up-sampling followed by a 1× 1 convolution, while ↓ denotes the strided convolution.

Id Layer Name (scale1×) Id Layer Name (scale2×) Id Layer Name (scale4×)

Stage0

1-0 Conv(3,64), ReLU
1-1 RB ×16
1-2 Conv(64,64)
1-3 $1-0 + $1-2

Stage1

1-4 TT
1-5 RB×16
1-6 Conv(64,64)
1-7 $1-4 + $1-6

Stage2

2-0 Conv(64,256), PS, ReLU($1-7)
2-1 TT

1-8 Concat($1-7 || $2-1↓) 2-2 Concat($1-7↑ || $2-1)
1-9 Conv(128,64), ReLU 2-3 Conv(128,64), ReLU

1-10 RB×8 2-4 RB×8
1-11 Conv(64,64) 2-5 Conv(64,64)
1-12 $1-7 + $1-11 2-6 $2-1 + $2-5

Stage3

4-0 Conv(64,256), PS, ReLU($2-6)
4-1 TT

1-13 Concat($1-12 || $2-6↓ || $4-1↓) 2-7 Concat($1-12↑ || $2-6 || $4-1↓) 4-2 Concat($1-12↑ || $2-6↑ || $4-1)
1-14 Conv(192,64), ReLU 2-8 Conv(192,64), ReLU 4-3 Conv(192,64), ReLU
1-15 RB×4 2-9 RB×4 4-4 RB×4
1-16 Conv(64,64) 2-10 Conv(64,64) 4-5 Conv(64,64)
1-17 $1-12 + $1-16 2-11 $2-6 + $2-10 4-6 $4-1 + $4-5

Stage4

4-7 Concat($1-17↑ || $2-11↑ || $4-6)
4-8 Conv(192,64), ReLU
4-9 Conv(64,32)

4-10 Conv(32,3)

Table 3. Network structure of the discriminator. Conv(Nin, Nout,
S) indicates the convolutional layer with Nin input channels, Nout

output channels and stride S. The kernel size is 3 × 3 for all
convolutional layers. The parameter is 0.2 for all the leaky ReLU
layers. The size of HR and SR input is 160× 160× 3

Id Layer Name
0 Conv(3,32,1), LReLU
1 Conv(32,32,2), LReLU
2 Conv(32,64,1), LReLU
3 Conv(64,64,2), LReLU
4 Conv(64,128,1), LReLU
5 Conv(128,128,2), LReLU
6 Conv(128,256,1), LReLU
7 Conv(256,256,2), LReLU
8 Conv(256,512,1), LReLU
9 Conv(512,512,2), LReLU

10 FC(12800,1024), LReLU
11 FC(1024,1)

Table 4. Performance on CUFED5 testing set using texture trans-
formers on different scales.

scale1× scale2× scale4× PSNR/SSIM
X 26.56 / .785

X 26.77 / .793
X 26.85 / .796

X X 26.80 / .793
X X X 26.92 / .797

Table 5. Running time and parameter number of different ap-
proaches. The last column shows the PSNR/SSIM performance
on CUFED5 testing set.

Approach Time Param. PSNR/SSIM
RCAN [5] 0.108s 16M 26.06 / .769

RSRGAN [4] 0.007s 1.5M 22.31 / .635
CrossNet [8] 0.229s 33.6M 25.48 / .764
SRNTT [7] 4.977s 4.2M 26.24 / .784

TTSR 0.096s 6.4M 27.09 / .804

References
[1] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In
CVPR, pages 5197–5206, 2015.

[2] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto,
Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa.
Sketch-based manga retrieval using manga109 dataset. Multi-
media Tools and Applications, 76(20):21811–21838, 2017.

[3] Libin Sun and James Hays. Super-resolution from internet-
scale scene matching. In ICCP, pages 1–12, 2012.

[4] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.
Ranksrgan: Generative adversarial networks with ranker for
image super-resolution. In ICCV, pages 3096–3105, 2019.

[5] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In ECCV, pages 286–
301, 2018.

[6] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun
Fu. Residual dense network for image super-resolution. In
CVPR, pages 2472–2481, 2018.

[7] Zhifei Zhang, Zhaowen Wang, Zhe Lin, and Hairong Qi. Im-
age super-resolution by neural texture transfer. In CVPR,
pages 7982–7991, 2019.

[8] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu
Fang. Crossnet: An end-to-end reference-based super reso-
lution network using cross-scale warping. In ECCV, pages
88–104, 2018.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 1. Visual comparison of different SR methods on CUFED5 [7] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 2. Visual comparison of different SR methods on CUFED5 [7] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 3. Visual comparison of different SR methods on CUFED5 [7] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 4. Visual comparison of different SR methods on CUFED5 [7] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 5. Visual comparison of different SR methods on Sun80 [3] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 6. Visual comparison of different SR methods on Sun80 [3] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 7. Visual comparison of different SR methods on Urban100 [1] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 8. Visual comparison of different SR methods on Urban100 [1] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 9. Visual comparison of different SR methods on Manga109 [2] dataset.

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

GT Reference Bicubic

RDN RCAN RSRGAN

CrossNet SRNTT TTSR(Ours)

Figure 10. Visual comparison of different SR methods on Manga109 [2] dataset.

