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6. Details of our framework
6.1. The BDDC network

ME subnet. In our approach, we employ a 5-level pyra-

mid network [26] for motion compensation, with the same

structure and settings as [26]. However, [26] trains the

network with the supervision of the ground-truth optical

flow, but in our approach, we pre-train the ME subnet by

minimizing the MSE between the warped frame and target

frame. That is, we use the loss function of

LME = D(x5,Wb(x
C
0 , f5→0)) +D(x5,Wb(x

C
10, f5→10))

(14)

to initialize our ME subnet before jointly optimizing the

whole BDDC network by (12) in our paper. Figure 10

shows the example frames warped by estimated motions,

which are trained by ground-truth optical flow and the MSE

loss of (14), and we also show the PSNR between the

warped and target frames. It can be seen that the MSE opti-

mized motion is able to reach higher PSNR for the warped

frame, thus leading to better motion compensation.
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Figure 10. Example frames warped by estimated motions, which

are trained by ground-truth optical flow and the MSE loss of (14).

MC and RC subnets. We follow [2, 3] to use the CNN-

based auto-encoders in our MC and RC subnets, and they

have the same structure in our approach. The detailed pa-

rameters are listed in Tables 2 and 3, in which GDN denotes

the generalized divisive normalization [2] and IGDN is the

inverse GDN [2].

MP subnet. We follow the motion compensation net-

work in [22] to design our MP subnet, which is illustrated

in Figure 11. In our MP subnet, all convolutional layers

use a filter size of 3 × 3. The filter numbers of all layers

Table 2. The encoder layers in the MC and RC subnets.

Layer Conv 1 Conv 2 Conv 3 Conv 4

Filter number 128 128 128 128

Filter size 5× 5 5× 5 5× 5 5× 5
Activation GDN GDN GDN -

Down-sampling 2 2 2 2

Table 3. The decoder layers in the MC and RC subnets.

Layer Conv 1 Conv 2 Conv 3 Conv 4

Filter number 128 128 128 3

Filter size 5× 5 5× 5 5× 5 5× 5
Activation IGDN IGDN IGDN -

Up-sampling 2 2 2 2

excluding the output layer are 64, and the filter number of

the output layer is set to 3. We use ReLU as the activation

function for all layers.

In our SMDC network, the subnets of ME, MC, MP and

RC have the same architecture as introduced above.

6.2. The WRQE network

In the WG subnet of our WRQE network, we set the hid-

den unit number in the bi-directional LSTM as 256, and

thus the layer d1 has 512 nodes. We use 5×5 convolutional

filters in all convolutional layers (the architecture is shown

in Figure 5 of our paper). The filter numbers are all set to 24

before the output layer, and the filter number for the output

layer is 3. We use ReLU as the activation function for all

convolutional layers.

7. Additional experiments
Configurations of x264 and x265. In Figure 6 and Table

1 of our paper, we follow [22] to use the following settings

for x264 and x265, respectively:

x264: ffmpeg -pix fmt yuv420p -s WidthxHeight

-r Framerate -i Name.yuv -vframes Frame

-c:v libx264 -preset veryfast -tune

zerolatency -crf Quality -g 10 -bf 2

-b strategy 0 -sc threshold 0 Name.mkv

x265: ffmpeg -pix fmt yuv420p -s WidthxHeight

-r Framerate -i Name.yuv -vframes Frame

-c:v libx265 -preset veryfast -tune

zerolatency -x265-params

"crf=Quality:keyint=10:verbose=1" Name.mkv

In the commands above, we use Quality = 15, 19, 23, 27

for the JCT-VC dataset, and Quality = 11, 15, 19, 23 for

UVG videos.
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Figure 11. Architecture of our MP subnet.
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Figure 12. Example frames after motion compensation in our SMDC network at λ = 1024.

Motion estimation in our SMDC network. Recall that,

in our SMDC network, x̃2 is generated by motion compen-

sation with the compressed motion f̂2→0. Then, we esti-

mate the motions of f̂1→0 and f̂1→2 from f̂2→0 using the

inverse operation (refer to (8) and (9) in Section 3.3) to gen-

erate x̃1.

However, as shown in Figure 12, x̃1 has even higher

PSNR than x̃2. Moreover, Table 4 shows the averaged

PSNR of x̃1 and x̃2 among all videos in the JCT-VC dataset.

The results in Table 4 also prove that our SMDC network

generates x̃1 with higher PSNR than x̃2. It is probably

because of the bi-directional motion used for x̃1, and the

shorter distance between x̃1 and the reference frame xC
0 .

These results validate that our SMDC network accurately

estimates multi-frame motions from a single motion map.

Table 4. Average PSNR (dB) of x̃1 and x̃2 in our SMDC network.

λ = 256 λ = 512 λ = 1024 λ = 2048

PSNR of x̃1 27.67 28.65 29.43 29.92

PSNR of x̃2 26.42 27.44 28.22 28.58

In conclusion, the benefits of our SMDC network can be

summarized as:

(1) As discussed in Section 4.3 of our paper, our SMDC

network reduces the bit-rate for motion information, due to

compressing a single motion map in SMDC.

(2) Our SMDC network generates x̃1 with even higher

quality than x̃2, and thus leads to fewer residual between x̃1

and x1 to encode. This facilitates the residual compression

subnet to achieve better compression performance.

Visual results. Then, we demonstrate more visual qual-

ity results of our PSNR and MS-SSIM models and the latest
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Figure 13. Visual results of our PSNR and MS-SSIM models in comparison with H.265.



video coding standard H.265 in Figure 13. The bit-rates in

Figure 13 are the average values among all frames in each

video, and the frames in Figure 13 are selected from layer 3,

i.e., the lowest quality layer in our approach. It can be seen

from Figure 13 that both our PSNR and MS-SSIM models

have less compression artifacts than H.265, in case that our

models consume lower bit-rate. That is, the frames in the

lowest quality layer of our approach still achieve better vi-

sual quality, when the average bit-rate of the whole video is

lower than H.265.

Different GOP sizes. Our method is able to adapt to

different GOP sizes, since our BDDC and SMDC networks

can be flexibly combined. In Figure 2, one more SMDC

module can be inserted between the two SMDC modules,

enlarging the GOP size to 12. More SMDC modules can be

inserted to further enlarge the GOP size. In DVC [22], GOP

= 12 is applied on the UVG dataset. For fairer comparison,

we also test our HLVC approach on UVG with GOP = 12.

Our PSNR performance on UVG drops to BDBR = 1.53%
with the same anchor in Table 1, but we still outperform

Wu et al. [38] and DVC [22].

Comparison with different configurations of x265. In

our paper, we compare with the “LDP very fast” mode of

x265. However, since our HLVC model has a “hierarchi-

cal B” structure, we further compare our approach with

x265 configured with “b-adapt=0:bframes=9:b-pyramid=1”

instead of “zerolatency”. The detailed configuration is as

follows.

ffmpeg -pix fmt yuv420p -s WidthxHeight

-r Framerate -i Name.yuv -vframes

Frame -c:v libx265 -preset

veryfast/medium -x265-params

"b-adapt=0:bframes=9:b-pyramid=1:

crf=Quality:keyint=10:verbose=1" Name.mkv

With the anchor of x265 “hierarchical B”, we achieve

BDBR = −9.85% and −10.55% for the “medium” and

“very fast” modes on MS-SSIM. For PSNR, we do not

outperform x265 “Hierarchical B” (BDBR = 20.87%).

Besides, we also compare our approach with the “LDP

medium” mode of x265, where we obtain BDBR =

−34.45% on MS-SSIM. In terms of PSNR, we are com-

parable with x265 “LDP medium” (BDBR = −1.08%).

Comparing ablation results with DVC [22]. DVC [22]

has the IPPP prediction structure, while our approach em-

ploys the bi-directional hierarchical structure. To directly

compare the performance of these two kinds of frame struc-

ture, we calculated the BDBR values of our ablation mod-

els with the anchor of DVC [22] on JCT-VC. The results

of our “baseline+HQ” and “baseline+HQ+SM” models are

−5.50% and −7.37% vs. DVC [22], respectively. It can

be seen that our hierarchical model (+HQ) outperforms the

IPPP structure of DVC (BDBR<0). This validates the ef-

fectiveness of our hierarchical layers.


