
A. Overview
In the appendix, we provide the detailed algorithms

and additional discussions for computing the parallel
N -direction frame fields, the mapping of neighborhood
patches onto tangent planes and the resampling of feature
maps there. The network structures and training details of
experiments in the text, as well as additional results and
comparisons with previous methods are also presented.

B. Computing the parallel frame fields
Given a 3D surface mesh, the smooth or parallel frame

field that approximates parallel transport of tangent spaces
for neighboring points can be efficiently constructed [45].
In particular, we adopt the complex number based ap-
proach [21, 8] to encode the N -direction fields. We identify
the tangent plane TxM with the complex plane, and a set
of unit length vectors {u · eik 2π

N |k = 0, · · · , N − 1} ⊂ C
forming a rotationally symmetric N -direction frame can be
conveniently encoded by their common N -th order power
z = uN ∈ C. To compute a smooth frame field that a)
deviates from the parallel transport minimally and b) aligns
with salient geometric features of the domain surface, we
solve the following optimization problem:

min
{zi}

.
∑
i∼j
‖zi − tjizj‖2 + λ

∑
i

wi‖zi − z0
i ‖2, (3)

where i, j are neighboring vertices on the surface mesh,
tji ∈ C is the discrete parallel transport along the edge
ij that rotates the tangent plane of j to identify with that
of i [21], λ is the weight for the second curvature direction
alignment term, wi = tanh(|kmax − kmin|) measures the
anisotropy at the i-th vertex using its maximum and mini-
mum principle curvature values kmax, kmin, and z0

i is the
complex N -th order power of the maximum curvature di-
rection at the vertex. The first term is a discretization of the
Dirichlet energy of the frame field that measures its varia-
tion and encourages parallelism. The second term encour-
ages alignment of the frame field to strong anisotropic di-
rections and salient geometric features of the surface.

As shown in Fig. 8, the smooth frame fields aligned with
salient geometric features show strong consistency among
deformed shapes, and the singular points are placed consis-
tently at regions with high curvature.

Alignment to anisotropy. We test how different balances
of field smoothness and alignment to strong anisotropy of
the surfaces affect performances. We generate four dif-
ferent sets of frames for the registration task, using λ =
0, 0.01, 0.1, 1 respectively. The testing accuracies are re-
ported in Table 7, where “SF”, meaning smooth frames
without curvature direction alignment, corresponds to λ =
0 and ‖z‖ = 1 to prevent degenerate solutions. From

Figure 8. The smooth frame fields (shown as crosses) aligned with
salient geometric features have strong consistency among diverse
human body shapes. The singular vertices marked as red points
are also distributed similarly across the shapes, concentrating on
regions of high curvature, e.g. nose, finger tips, and toes.

Table 7. Testing accuracy of different frame alignment choices,
on the FAUST non-rigid registration task by classification. SF
means smoothness only without alignment to surface anisotropy.
The other numbers are used as the curvature direction alignment
weight λ for computing the smooth frame field.

SF 0.01 0.1 1
Accu.(%) 88.56 92.01 91.97 90.77

the results, we see that a mild alignment to strong surface
anisotropic directions is helpful in achieving the best per-
formances. Therefore, we have used λ = 0.01 for all tasks
shown in other parts of the paper.

C. Tangent plane projection and resampling

The algorithm for building the convolution structure on a
local patch of a mesh vertex is illustrated in Alg. 1 in pseudo
code. For each mesh vertex, the algorithm first does a flood
searching of K neighbor vertices in O(K) and projects the
vertices onto the tangent plane using local coordinate sys-
tems. It then triangulates the projected vertices into a Delau-
nay triangulation in O(K logK), and samples H×W grid
points against the triangulation inO(HW logK). The sam-
pled grid points are finally stored into the sparse tensor that
will be reshaped as a sparse matrix and readily multiplied
with feature maps in each convolution operation (Sec. 5.2).
Note that all vertices can be processed in parallel.

In the algorithm we have abused notations slightly, us-
ing t[0] of a tuple to represent the vertex, its index, and
its spatial position; the exact meaning should be clear from
context. For a given level of domain resolution, the patch
size parameter d is set to be the average edge length of all
meshes in the given level of the training dataset.



Algorithm 1: Tangent plane projection and feature
map resampling for a local patch

Input: vi ∈ V , frames F , transport τ , patch side
length d, conv kernel shape H×W

Output: updated sparse tensor S of shape
|V |×N×H×W×|V |×N

// Flood to find and project
neighbor vertices

Q = [(vi, (0, 0), 0)], P = {}, visited = {vi};
while Q not empty do

t =dequeue(Q), P = P ∪ t;
if dist(vi, t[0]) >

√
2d or ‖t[1]‖ >

√
2d then

continue;
end
for vk ∼ t[0], vk /∈ visited do

visited = visited ∪ vk;
ulvk = τt[0],vk(u

t[2]
t[0]);

v′k = 0.5 · (F t[2]
t[0] + F lvk)(vk − t[0]) + t[1];

enqueue(Q, (vk,v
′
k, l));

end
end
// Triangulate the projected points
DT (P ) = Delaunay triangulation of {t[1]|t ∈ P};
// Resample with a regular grid

sized d×d
for j = 1, · · · , N do

for grid point pr,c, 1 ≤ r ≤ H, 1 ≤ c ≤W do
find the containing triangle in DT (P ) with

vertices corresponding to (ta, tb, tc) ⊂ P ;
compute barycentric weights (wa, wb, wc);
S(i, j, c, r, ta[0], ta[2]) = wa;
S(i, j, c, r, tb[0], tb[2]) = wb;
S(i, j, c, r, tc[0], tc[2]) = wc;

end
end

D. Network structures and training details
We have used convolution kernels with spatial size 5×5

for all deformable domain tasks, and 3×3 for the semantic
scene segmentation. All our networks have been trained
with the Adam solver [20] and batch size one, with fixed
learning rate 10−4.

The network structure used for SHREC’15 non-rigid
shape classification is shown in Fig. 9. It is trained for 50
epochs on a single GPU. For the variant network without
any normalization layers, it needs to train for 100 epochs
until convergence.

The network used for the human body segmentation task
is shown in Fig 10. It has three level-of-details. The loss
function is the summation of cross entropy between pre-
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Figure 9. The network used for SHREC’15 non-rigid shape clas-
sification task. Each box represents a feature map of shape V×C,
where C is the total feature size for all N=4 cover sheets and
given by numbers aside the boxes, and V the number of surface
vertices. The input feature map is a 4-channel feature of H×W
grid points for each vertex (Sec. 5.2). The “convolution through
residual block” contains two sequential residual blocks, with each
block made by two convolutions that retain the input feature size.
All convolution operations except the last one are followed with
instance normalization and ReLU. Global average pooling is a
standard average pooling over all vertices. For this dataset there
are around 10k, 1700, 300 vertices for the three level-of-details,
respectively.
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Figure 10. The network used for the human body segmentation
task. See caption of Fig. 9 for detailed explanation. The number
of vertices for the three level-of-details are V, V/3, V/9, where
V is the number of vertices of each mesh in the dataset. In the
original dataset, V varies from 3k to 12k. For the remeshed data,
V is around 7k.

dicted segmentation label and the ground truth label for
each mesh vertex. The network is trained for 50 epochs. To
obtain the predicted per-face segmentation labels, we sam-
ple points for each face of a test mesh and project the points
onto closest vertices of our remeshed models, whose labels
are used to vote for the face label of the original test mesh.

The network used for the human body registration task
by vertex classification, and testing different frame field
symmetry ordersis is shown in Fig. 11. The network is
trained for 400 epochs.



NxHxWx4 Nx64 Nx64 Nx64 256 6890/5000

PFConv, ReLU

Conv 1x1
PFConv residual block

Feature reduce

64

Figure 11. The network used for human body registration through
a classification of mesh vertices into 6890 or 5000. The number
of surface vertices is 6890 for the original dataset and 5000 for the
remeshed dataset. See caption of Fig. 9 for detailed explanation.
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Figure 12. The regression network used for human body regression
task. See caption of Fig. 9 for detailed explanation. The number
of surface vertices are around 10k, 3.2k, 1k for the three level-of-
details respectively.
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Figure 13. The network used for ScanNet segmentation task. See
caption of Fig. 9 for detailed explanation. The input include the
7-channel feature of each vertex and the 1-channel local height
feature for each grid point. The number of vertices for the three
level-of-details are V, V/3, V/9, where V is the number of ver-
tices of each cropped chunk, with the crop method same as [16].

The network used for the ScanNet semantic scene seg-
mentation task is shown in Fig. 13. The network outputs,
for each vertex, the probability distribution of 21 segmenta-
tion labels, which is compared with ground truth label using
cross entropy during training. It is trained for 30 epochs.

E. More results and comparisons

Shrec’15 classification We show some results in the clas-
sification task in Fig. 14; the single misclassified shape by

Figure 14. In the first row left shows the single incorrectly classi-
fied shape by our method; it is an “ant” misclassified as “spider”
(an example shown on the right, is indeed confusingly similar to
“ant”). In the second row we show more shapes in the SHREC’15
dataset, which are “camel”, “horse” and “cat”.
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Figure 15. Genus of the meshes in the FAUST real scan dataset.
More than half of the meshes have genus larger than 1.

our method is a challenging “ant” that looks similar to the
wrong label “spider”.

Non-rigid registration by fitting template embedding.
In this part we present an application that resolves the non-
rigid registration problem with an approach different from
the per-vertex classification (Sec. 6.1). We notice that the
registration by classification has severe limitations in real
applications: to classify each vertex to 6k classes for exam-
ple is not scalable when there are many input vertices, and
the classification error does not measure at all how far away
a mis-classified vertex is from ground-truth. Thus we pro-
pose a novel but simple method for non-rigid registration
that uses a surface-based CNN for direct regression of the
template embedding in R3.

We evaluate on the real scans of the FAUST dataset,
which has 80 meshes for training and 20 for test. The
meshes are noisy, with diverse and high genus for different
poses of a same person (see Fig. 15 for statistics), which is
frequently due to the merging of spatially intersecting com-
ponents. Since the raw scans are very dense meshes, we
have remeshed each raw scan to simpler meshes with the
number of vertices around 10k. For each real scan there is
a registered deformed template mesh, which provides the
ground truth embedding for supervision and testing. To be
specific, we project a vertex of the real scan to the closest
point on the registered deformed template mesh, and take
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Figure 16. Results of non-rigid human body registration through
regression of the template embedding coordinates. (i) shows the
texture mapping using the groundtruth correspondence. (ii) is the
results of [32]. (iii) shows our results.
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Figure 17. The ratio of vertices whose error is bellow given thresh-
old. The per-vertex error is the geodesic distance between the pre-
dicted point position and ground truth on the template surface, nor-
malized by square root of surface area. Our accuracy under 0.03
is 97.98% while [32] is 69.37%.

its position and normal vectors on the rest pose template as
the supervising regression target.

The network for this point-wise regression is a standard
UNet structure as shown in Fig. 12. For each vertex of an
input raw scan mesh, the output contains the position and
normal vectors of the corresponding point on the rest pose
template mesh. The training loss is

L =
1

V

V∑
i

‖pi − p0
i ‖1 +

wreg
Vi

∑
j∼i
‖pi − pj‖1


+
wn
V

V∑
i

‖ni − n0
i ‖1 +

wreg
Vi

∑
j∼i
‖ni − nj‖1


+
wcon
E

∑
i∼j
|ni · (pi − pj)|,

where V is the number of vertices of the raw scan mesh, p
the regressed vertex position, p0 the target position, n the
regressed vertex normal, n0 the target normal, wn = 0.1
to normalize different scales between position and normal
in the dataset, wreg = 0.2 the weight for Laplacian reg-
ularization terms of position and normal, wcon = 20 the
weight for normal and position consistency, Vi the number

of neighboring vertices of the i-th vertex, andE the number
of directed mesh edges. We use l1 norm for these losses be-
cause there are noisy vertices in the raw scans which do not
have valid target points on the template surface. We train the
network for 200 epochs on single GPU using Adam solver
with a fixed learning 1× 10−4.

Geodesic errors of the network predictions on the test set
are shown in Fig. 17. Following [19], the geodesic error for
a surface point x with predicted position y and ground truth
point y∗ on the template surfaceM is computed as ε(x) =
dM(y,y∗)√
|M|

, where dM(·, ·) computes the geodesic distance

of two points projected onto the surfaceM, and |M| is its
area for normalization. Visual results are shown in Fig. 16.
It is clear that our results are better than MDGCNN both
quantitatively and qualitatively on these real scans, and the
difference seems to be more obvious than the registration
by vertex classification task on the clean meshes (Sec. 6.1).

More results of ScanNet segmentation. We present the
per-category prediction accuracy (measured by IoU) of
comparing methods for ScanNet semantic segmentation in
Table 8 and Table 9. For Ours*, the network structure is
similar to the network shown in Fig. 13, but each “PFConv
residual block” contains three sequential residual blocks
and the feature sizes in three levels are changed to 128, 256,
512, respectively. More visual results are shown in Fig. 18.
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Figure 18. More results of Scannet segmentation.(i) is the ground truth segmentation; (ii) is the results of [42] (iii) is the results of [16]; (iv)
shows our results. (v) is the result of our method with deeper network. Our method gives clearer boundaries, like the boundary between
window and wall in the second row, the boundary between picture and wall and the boundary of sink in the last row.

Table 8. Per-category IoU on ScanNet validation set. The abbreviations respectively stand for “bathtub, bed, bookshelf, cabinet, chair,
counter, curtain, desk, door, floor, otherfurniture, picture, refrigerator, shower, curtain, sink, sofa, table, toilet, wall, window”. The highest
accuracies both among the three comparing results and among the four comparing results with our additional increased network are marked
in bold.

Method mIoU bath bed book cab chr cntr crtn desk door flr other pic refrg shwr sink sofa tab toil wall wdw
[42] 49.1 68.0 63.8 56.3 41.7 73.6 45.6 33.2 40.7 34.9 91.9 26.2 14.5 31.7 28.1 44.2 62.8 51.5 68.8 67.9 38.3
[16] 58.1 67.6 67.3 71.3 46.8 78.1 44.4 52.5 47.5 44.8 94.4 40.2 21.1 35.2 51.3 51.7 64.0 63.5 80.3 75.0 46.0
Ours 63.3 79.7 70.3 73.7 55.6 81.0 53.9 70.1 53.1 50.0 93.7 42.3 30.3 46.3 55.6 60.1 66.4 60.9 87.3 78.7 56.5

Ours* 66.2 81.6 73.0 77.0 56.8 83.3 62.8 70.9 55.8 52.3 94.0 46.4 33.1 51.7 60.9 61.2 72.3 65.0 87.7 80.0 58.6

Table 9. Per-category IoU on ScanNet test set. See caption of Table 8 for explanations.
Method mIoU bath bed book cab chr cntr crtn desk door flr other pic refrg shwr sink sofa tab toil wall wdw

[42] 43.8 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2
[16] 56.6 67.2 66.4 67.1 49.4 71.9 44.5 67.8 41.1 39.6 93.5 35.6 22.5 41.2 53.5 56.5 63.6 46.4 79.4 68.0 56.8
Ours 60.2 74.6 71.2 67.4 53.5 75.6 41.6 68.1 42.0 43.4 93.8 40.1 27.0 51.2 51.1 61.2 69.4 48.3 84.7 77.7 61.5

Ours* 62.2 79.7 69.7 75.0 57.7 79.2 47.6 68.5 36.6 46.8 94.2 41.4 30.7 53.2 49.4 68.1 71.5 47.5 88.0 79.6 59.3


