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Abstract

This document provides further details about the COCO-
Search18 dataset (Sec. 1), Dynamic Contextual Beliefs
(Sec. 2), and implementation (Sec. 3). We also include ad-
ditional results from experiments and ablation studies, and
interpretation (Sec. 4).

1. Details about COCO-Search18 Dataset

Data source: The COCO-Search18 dataset annotates
COCO [6] with human gaze fixations made during a stan-
dard target-present (TP) or target-absent (TA) search task,
where on each trial the search image either depicted the tar-
get (TP) or it did not (TA). All of the images were selected
from the trainval set, and detailed descriptions of TP and
TA image selection and gaze collection methods are pro-
vided below.

Target present image selection:
In addition to the exclusion criteria described in the main

text, we also excluded images in which the target was highly
occluded or otherwise difficult to recognize. Specifically,
we only selected images in which the cropped target-object
patch had a classification confidence >.99. To train this
classifier, we cropped the target in each image (by bound-
ing box) and used these image patches as positive samples.
Same-sized image patches of non-target objects were used
as negative samples. Negative samples were constrained to
intersect with the target by 25% (area of intersection divided
by area of target) so that they could serve as hard negatives
for specific targets. More than 1 million cropped patched
were collected and resized to 224x224 pixels, while keeping
the original aspect ratio by padding. The classifier is fine-
tuned from an ImageNet-pretrained ResNet-50 model with
the last fully connected layer changed from 1000 outputs
to 33 (32+“Negative”). Images with a classification score
for the cropped target patch that was <.99 were excluded.
This resulted in 18 categories with at least 100 images in
each category, and 3131 images in total. As described in

Category TP images ACC TA images ACC

bottle 166 0.84 166 0.92
bowl 141 0.80 141 0.90
car 104 0.89 104 0.91
chair 253 0.89 253 0.64
clock 119 0.99 119 0.97
cup 276 0.92 276 0.76
fork 230 0.96 230 0.98
keyboard 184 0.92 184 0.98
knife 141 0.89 141 0.97
laptop 123 0.95 123 0.95
microwave 156 0.97 156 0.95
mouse 109 0.97 109 0.97
oven 101 0.91 101 0.93
potted plant 154 0.84 154 0.95
sink 279 0.97 279 0.94
stop sigh 126 0.95 126 0.99
toilet 158 0.99 158 1.00
tv 281 0.96 281 0.93

total/mean 3101 0.92 3101 0.92

Table 1: Number of images and response accuracy (ACC)
for TP and TA images grouped by target category.

the main text, we conducted a final manual checking of the
dataset to exclude images depicting digital clocks (5 im-
ages), so as to make the clock target category specific to
analog clocks, and to remove images depicting content that
participants might find objectionable. This latter criterion
resulting in the exclusion of 30 images, 22 of which were
from the toilet category.

After implemented all exclusion criteria, we selected
3101 target-present images from 18 categories: bottle,
bowl, car, chair, clock, cup, fork, keyboard, knife, laptop,
microwave, mouse, oven, potted plant, sink, stop sign, toi-
let, tv. See Table 1 for the specific number of images in
each category and the average response accuracy (ACC).



Figure 1: Examples of human scanpaths during target-present (top 3 rows) and target-absent (bottom 3 rows) visual search.
From left to right and top to bottom, the 18 target categories are: bottle, bowl, car, chair, clock, cup, fork, keyboard, knife,
laptop, microwave, mouse, oven, potted plant, sink, stop sign, toilet, and tv. Each yellow line represents the scanpath of one
behavioral searcher, with numbers indicating fixation order.

There were an equal number of TA images (for a total of
6202 images), which were all resized and padded to fit the
1050× 1680 resolution of the display monitor.

Gaze data collection procedure: Ten university under-
graduate and graduate students (6 males, age range 18–30)
with normal or corrected to normal vision participated in
this study, which was approved by the Institutional Review
Board. They were naive with respect to experimental ques-
tion and design, and were compensated with course credits
or money for their participation. Informed consent was ob-
tained at the beginning of the experiment, and every partic-
ipant read and understood the consent form before signing
it.

The 6202 images were divided into six days of exper-
iment sessions with each session consisting of ∼500 TP
images and the same number of TA images, randomly in-
terleaved. Images for a given target category were grouped
and presented sequentially in an experiment block (i.e., tar-
get type was blocked). Preceding each block was a calibra-
tion procedure needed to map eye position obtained from

the eye-tracker to screen coordinates, and a calibration was
not accepted until the average calibration error was ≤.51
and the maximal error was ≤.94. Each trial began with a
fixation dot appearing at the center of the screen. To start a
trial, the subject should press the “X” button on a gamepad
while carefully looking at the fixation dot. A scene would
then be displayed and their task was to answer “yes” or “no”
whether an exemplar of the target category for that block ap-
pears in the displayed scene. The subject registered a “yes”
target judgment by pressing the right rigger of the gamepad,
and a “no” judgment by pressing the left trigger. They were
told that there were equal number of target present and ab-
sent trials, and that they should respond as quickly as possi-
ble while remaining accurate. Participants were allowed to
take multiple breaks between and within each block.

Image presentation and data collection was controlled
by Experiment Builder (SR research Ltd., Ottawa, Ontario,
Canada). Images were presented on a 22-inch LCD monitor
(resolution: 1050x1680), and subjects viewed these stimuli
in a distance of 47cm from the monitor, enforced by both
chin rest and head rest. Eye movements were recorded us-



ing an EyeLink 1000 eye tracker in tower-mount configu-
ration (SR research Ltd., Ottawa, Ontario, Canada). The
experiment was conducted in a quiet and dimmed labora-
tory room. Fig. 1 shows some TP and TA images from the
18 object categories, with overlaid human scanpaths.

2. Detailed Description of DCB

DCB: An input image is resized to 320×512 for computa-
tional efficiency (the original image is 1050×1680), while
the blurred image is obtained by applying a Gaussian filter
on the original image with the standard deviation σ = 2.
Both images are passed through a Panoptic-FPN with back-
bone network ResNet-50-FPN pretrained on COCO2017
[4]. The output of the Panoptic-FPN has 134 feature maps,
consisting of 80 “thing” categories (objects) and 54 “stuff”
categories (background) in COCO. Feature maps are then
resized to 20×32 spatially, same as the discretization of fix-
ation history. At a given time step t, feature maps H for the
original image and feature maps L for the blurred image are
combined for DCB:

Bt =Mt �H + (1−Mt)� L (1)

where � is element-wise product and Mt is the mask gen-
erated from fixation history and repeated over feature chan-
nels (see Fig. 2). Note that the above equation is equivalent
to Eq. (1) in the main paper which is written in a recurrent
form.

Encoding the target object category: The task embedding
used in our model is the one-hot encoding maps which spa-
tially repeat the one-hot vector. To make predictions condi-
tioned on the task, inputs of each convolutional layer are
concatenated with this embedding. This is equivalent to
adding a task-dependent bias term for every convolutional
layer.

3. Implementation details

Action Space. Our goal is to predict the pixel location
where the person is looking in the image during visual
search. To reduce the complexity of prediction, we dis-
cretize the image into a 20×32 grid, with each patch corre-
sponding to 16×16 pixels in the original image coordinates.
This descretized grid defines the action space for all models
tested in this paper. At each step, the policy chooses one
out of 640 patches and the center location of that selected
patch in the original image coordinates is used as an action.
The maximum approximation error due to this discretiza-
tion procedure is 1.75 degrees visual angle.

IRL. The IRL model is composed of three components—
the policy network, the critic network and the discriminator
network. The policy network consists of four convolutional

layers whose kernel sizes are 5, 3, 3, 1 with padding 2, 1, 1,
0 and output channels are 128, 64, 32 and 1, and a softmax
layer to output a final probability map. The critic network
has two convolutional layers of kernel size 3 and two fully-
connected (fc) layers whose output sizes are 64 and 1. The
convolutional layers have output sizes 128 and 256, respec-
tively, and each is followed by a max pooling layer of kernel
size 2 to compress the feature maps into a vector. Then this
feature vector is regressed to predict the value of the state
through two fc layers . The discriminator network shares
the same structure with the IRL policy network except that
the last layer is a sigmoid layer. Note that all convolutional
layers and fully-connected layers are followed by a ReLU
layer and a batch normalization layer [2] except the output
layer.

The critic network is jointly trained with the policy net-
work to estimate the value of a state (i.e., expected return)
using smoothed L1 loss. The estimated value is used to
compute the advantage A(S, a) (note that the state S is rep-
resented by the proposed DCB in our approach) in Eq. (4)
of the main paper using the Generalized Advantage Esti-
mation (GAE) algorithm [8]. At each iteration, the policy
network first generates two scanpaths by sampling fixations
from the current policy outputs for each image in a batch.
Second, we break the generated scanpaths into state-action
pairs and sample the same number of state-action pairs from
ground-truth human fixations to train the discriminator net-
work which discriminates the generated fixation from be-
havioral fixations. Lastly, we update the policy and critic
network jointly using the PPO algorithm [9] by maximizing
the total expected rewards which are given by the discrimi-
nator (see Eq. (3) of the main paper).

Training: The IRL model was trained for 20 epochs with
an image batch size of 128. The batch sizes used for train-
ing the discriminator and policy networks were 64. For the
PPO algorithm, the reward discount factor, the clip ratio and
number of epochs were set to 0.99, 0.2, and 10, respectively.
The extra discount factor in the GAE algorithm was set to
0.96. Both the policy network and the discriminator net-
work were trained with a learning rate of 0.0005. It took
approximately 40 minutes to train the proposed IRL model
(for 20 epochs) on a single NVIDIA Tesla V100 GPU. The
training procedure consumed about 5.6GB GPU memory.
Note that the segmentation maps used to construct the DCB
state representation had been computed beforehand.

Additional details on two baseline methods. Detector:
The detector network consists of a feature pyramid net-
work (FPN) for feature extraction (1024 channels) with a
ResNet50 pretrained on ImageNet as the backbone and a
convolution layer for detection of 18 different targets. The
detector network predicts a 2D spatial probability map of
the target from the image input and is trained using the
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Figure 2: Detailed illustration of Dynamic-Contextual-Belief. First, an input image and its low-res image counterpart are
converted into high-res beliefs and low-res beliefs. At each fixation, which is discretized into a binary fixation history map
with 1’s around the fixation location and 0’s elsewhere, a new state is generated by concatenating the output of Eq. (1) with
a one-hot task embedding (best viewed in color).

ground-truth location of the target. Another similar base-
line is Fixation Heuristics. This network shares exactly
the same network architecture with the detector baseline but
it is trained with behavioral fixations in the form of spatial
fixation density map (FDM), which is generated from 10
subjects on the training images.

Scanpath Generation. When generating scanpaths, a fix-
ation location is sampled from the probability map that
the models have produced and Inhibition-of-Return is ap-
plied to prevent revisiting previously attended locations. All
predictive methods including IRL, behavior cloning, and
heuristic methods, generate a new spatial probability map
at every step, while the predicted probability map is fixed
over all steps for the Detector and Fixation Heuristic base-
lines.

4. Additional Experiment Results

Cumulative distribution of sequence scores. In the main
paper we reported the average Sequence Score of 0.422 for
the scanpaths generated by the IRL model. To put this in
perspective, Fig. 3 plots the cumulative distribution of the
sequence scores and shows four qualitative examples that
have sequence scores of 0.33, 0.40, 0.50, and 0.75, respec-
tively.

Comparing different state representations. To evalu-
ate the benefits of having DCB as the state representation,
we compared its predictive performance with the Cumula-
tive Foveated Image (CFI) [11] under the same IRL frame-

work. CFI is created by extracting CNN feature maps on
the retina-transformed images which are progressively more
blurred based on the distance away from the currently fix-
ated location. On the other hand, the DCB is created by
extracting panoptic segmentations [3] on uniform-blur im-
ages which are uniformly blurred except around the fixated
region (the level of blurriness applied in DCB is close to the
middle level in the blur pyramid of CFI [1, 7, 11]). For a
fair comparison, we extract features for CFI using the back-
bone ResNet-50-FPN network from the Panoptic-FPN [3]
that was used in DCB. Both DCB and CFI have the same
spatial resolution of 20×32. As shown in Tab. 2, the IRL
model with DCB achieves significantly higher search ef-
ficiency and scanpath similarity than when using CFI as
state representation. Specifically, DCB reduces the search
gap by approximately 45% and improves the scanpath ra-
tio from 61.9% to 82.6%, much closer to the human be-
havioral ratio of 86.2%. This result is even more impres-
sive considering the size differences between the policy
network used with DCB and CFI: DCB is trained with a
smaller policy network, since it is comprised of 134 chan-
nels, nearly 8x smaller than CFI of 1024 channels. In our
experiment, the policy network with CFI state representa-
tion has 29.6M parameters, while the policy network with
DCB state representation only has 0.3M parameters. Re-
latedly, another benefit of having DCB as state representa-
tion is that it is memory and operation efficient. Creating
DCB requires a smaller computational cost than creating
CFI, since there’s only a single level of blurriness in DCB



Figure 3: Left: cumulative distribution of the sequence scores of the proposed IRL scanpath prediction method. Right: Four
qualitative examples. Human scanpaths are colored in yellow, and the IRL-generated scanpaths are in green. The sequence
score for the generated scanpaths are 0.33, 0.40, 0.50, and 0.75, from top to bottom.

and extracted panoptic segmentation maps are smaller by
an order of magnitude than the feature maps extracted for
CFI. Given that IRL models are particularly difficult to train
in high dimensional environments [10], having an efficient
representation like DCB can be very helpful.

State Ablation. DCB is a rich representation that incorpo-
rates top-down, bottom-up, and history information. The
full representation consists of 136 belief maps, which can
be divided into five groups: target object (1 map), “thing”
(object, 79 maps), “stuff” (background classes, 54 maps),
saliency (1 map, extracted using DeepGaze2 [5]), and his-
tory (1 binary map for the locations of previous fixations).
To understand the contribution of each factor, we removed
the maps of each group one at a time and compared the re-
sulting model’s performance. As shown in Tab. 3, target
object and “thing” maps are the most critical for generating
human-like scanpaths, followed by “stuff” maps, whereas
saliency and history do not have strong impact to the model
performance.

Greedy vs. Non-greedy search behavior. How does hu-
man search behavior compare to generated scanpaths re-
flecting either Greedy or Non-greedy reward policies? Un-
der the greedy policy, the selection of each location to fix-
ate during search reflects a maximization of immediate re-
ward. But the greedy policy is highly short-sighted – it only
seeks reward in the short term. Non-greedy reward seeks to
maximize the total reward that would be acquired over the
sequence of fixations comprising a scanpath. This policy
therefore does not maximize reward in the near term, but
rather allows more exploration that leads to higher total re-
ward. As shown in Tab. 4, we generated greedy and non-
greedy policies from our IRL model and compared their
predictive performance on human scanpaths. The results
show that 1) models using greedy vs. non-greedy policy
produce different search behaviors, with the model using
non-greedy policy generating more human-like scanpaths
by all tested metrics. This is an interesting finding. Despite
the high efficiency of human search in our study (1-2 sec),
the search process was strategic in that the fixations maxi-



State
Representation

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

DCB 0.422 0.826 4.509 0.987 0.886 0.695 0.866 0.885
CFI 0.402 0.619 3.412 1.797 0.875 0.666 0.864 0.857

Table 2: Dynamic contextual belief (DCB) vs. cumulative foveated image (CFI) under the framework of IRL.

State
Representation

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

DCB with all components 0.422 0.803 4.423 1.029 0.880 0.676 0.841 0.888
w/o history map 0.419 0.800 4.397 1.042 0.882 0.672 0.844 0.887
w/o saliency map 0.419 0.795 4.403 1.029 0.880 0.675 0.840 0.887
w/o stuff maps 0.407 0.777 4.111 1.248 0.876 0.662 0.836 0.875
w/o thing maps 0.331 0.487 2.047 3.152 0.855 0.605 0.852 0.818
w/o target map 0.338 0.519 2.274 2.926 0.866 0.613 0.837 0.820

Table 3: Ablation study of the proposed state representation—dynamic contextual belief. The full state consists of 1
history map, 1 saliency map, 54 stuff maps, 79 context maps and 1 target map. We mask out one part by setting the map(s)
to zeros at each time.

Scanpath
generation policy

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

Based on total reward 0.422 0.826 4.509 0.987 0.886 0.695 0.866 0.885
Based on immediate reward 0.375 0.704 3.893 2.143 0.886 0.648 0.873 0.852

Table 4: IRL model predictions using Greedy (immediate reward) and Non-greedy (total reward) policy.

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

IRL, 20 ipc 0.415 0.808 4.324 1.140 0.875 0.672 0.832 0.879
CNN, 20 ipc 0.408 0.723 3.906 1.325 0.884 0.664 0.849 0.878
IRL, 10 ipc 0.409 0.774 4.029 1.318 0.881 0.591 0.851 0.819
CNN, 10 ipc 0.397 0.678 3.542 1.657 0.877 0.594 0.847 0.821
IRL, 5 ipc 0.389 0.723 3.696 1.603 0.876 0.588 0.844 0.813
CNN, 5 ipc 0.388 0.678 3.484 1.731 0.886 0.594 0.862 0.828

Table 5: Data efficiency of IRL and CNN. “ipc” means images per category used for training. For exmaple, IRL 10 ipc
means we train the IRL model using 10 images from each category which are randomly selected from the training data. CNN
and IRL are trained and tested on the same images for fair comparison.

mized total reward, even over that short period of time.

Data Efficiency. Table 5 shows the full results of IRL and
BC-CNN given different numbers of training images across
different metrics. Both use DCB as the state representation.
The results are consistent with the results presented in the
main paper and suggest that IRL is more data-efficient when
compared to the CNN – IRL achieved comparable or better
results than the CNN using less training data.
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