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1. Abstract
This supplementary material accompanies our main

manuscript “Spatial-Temporal Graph Convolutional Net-
work for Video-based Person Re-identification”. Further
analysis experiments on DukeMTMC-VideoReID [3, 2],
and some visualization results are provided in this material.

2. More Analysis and Experiments
Due to space limitation in Section 4.5 and 4.6 in the

main manuscript, we report the results of the analysis ex-
periments on the key parameters of our method on MARS
[4]. We provide the analysis experiments on DukeMTMC-
VideoReID in this supplementary material as well.

2.1. The Number of GCN Layers in GCN Module

In our proposed model, the number of GCN layers in
TGCN and SGCN are denoted as M and K, respectively.
We carry out experiments to investigate the effect of the
number of GCN layers by changing one of the GCN mod-
ules while freezing the other one.
The impact of the number of GCN layers in TGCN. In
this experiment, we fix the number of GCN layers in SGCN
(i.e., K = 2) then evaluate the performance of our model
when M = 3, 4, 5, 6, 7. From Figure 1 (a), we can see that
the best Rank-1 and the best mAP are 97.44% and 95.94%
respectively when M = 4. The result outperforms the state-
of-the-art methods and the baseline model by a large mar-
gin.
The impact of the number of GCN layers in SGCN. Sim-
ilarly, we fix the number of GCN layers in SGCN (i.e.,
M = 4) then evaluate the performance of our model when
K = 1, 2, 3, 4. As shown in Figure 1 (b), when K = 3,
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Figure 1. (a) Analysis on the number of GCN layers in TGCN. (b)
Analysis on the number of GCN layers in SGCN. We carry out
these experiments on the DukeMTMC-VideoReID dataset.
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Figure 2. (a) Analysis on the number of patches in TGCN. (b)
Analysis on the number of patches in SGCN. We carry out these
experiments on the DukeMTMC-VideoReID dataset.

the model achieves the best performance. The Rank-1 is
97.44% and the mAP is 96.00%.

As shown in Figure 1, the performance of STGCN is
always higher than the baseline model (i.e., 94.08%/96.01%
in mAP/Rank-1) and the state-of-the-art methods, although
the number of GCN layers can affect the performance of the
model.

2.2. Analysis on the Number of Patches in GCN
Module

The number of nodes in the graph (i.e., the number of
patches) is another key parameter of GCN. For convenience,



we denote the number of patches of each frame in TGCN
and SGCN are P t and P s, respectively.
The impact of the number of patches in TGCN. In this
experiment, we fix P s = 4 and evaluate the results when
P t = 2, 4, 8. From the Figure 2 (a), we can see that the
model has the best performance when pt=4. The Rank-1 is
97.44% and the mAP is 95.94%.
The impact of the number of patches in SGCN. Similarly,
we fix P t = 4 and evaluate the results when P s = 2, 4, 8.
As shown in Figure 2 (b), the model has the best perfor-
mance when ps=4. The Rank-1 is 97.44% and the mAP is
95.94%.

As shown in Figure 2, the performance of STGCN is al-
ways higher than the baseline model (i.e., 94.08%/96.01%
in mAP/Rank-1) and the state-of-the-art methods, although
the number of patches can affect the performance of the
model.

2.3. Summary

Combined with Section 4.6, it can be seen that the role
of parameters of our proposed method on DukeMTMC-
VideoReID dataset is basically the same as on MARS
dataset. It always has obvious improvement under differ-
ent parameters and different datasets, which shows our pro-
posed method is robust and effective.

3. Visualization

Visualization of class activation maps We visualise the
class activation maps (CAMs) in Figure 3 by using Grad-
CAM [1].

From Figure 3 (a) and (b), it can be seen that the base-
line model only pays attention to few local body regions.
However, it is obvious that our proposed method can focus
on more discriminative pedestrian body parts, which can
be used to learn the structural information of pedestrian by
modeling the spatial relations of pedestrian patches.

Meanwhile, as Figure 3 (c) and (d) are illustrated, we
can observe that the occlusion has a serious impact on the
baseline model. Specifically, for Figure 3 (d), it is clear
that the baseline model almost can not pay attention to any
useful parts because the disturbance of occlusion. But our
proposed model still can focus on these unoccluded parts
which are discriminative regions. In addition, for Figure 3
(c), we can see that there are both unoccluded frames and
occluded frames in this image sequence. For these unoc-
cluded frames, our proposed method is slightly better than
the baseline model. But for these occluded frames, it is
clear that the baseline model can not focus on useful body
parts. On the contrary, our proposed method can effectively
and accurately focus on unoccluded pedestrian body parts,
which can alleviate occlusion problem.

Retrieval results analysis As shown in Figure 4, we can
see that the top 5 results of our proposed method is all
matching. However, the Rank-5 result of the baseline model
is a wrong match due to the problem of occlusion.

From the Figure 5, we can see the appearance of the
query image sequences and the gallery image sequences are
very similar. It is also clear that the top 5 results of our pro-
posed method is all matching. But the Rank-1 and Rank-5
results of the baseline model are disturbed by the samples
of other identities with similar appearance.

Summary From the class activation maps and retrieval
results above, we can know that they both can prove our
proposed method indeed alleviate the problem of similar ap-
pearances of different identities and occlusion problem by
modeling the spatial and temporal relations of patches.
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Figure 3. The visualization of the class activation maps (CAMs). Here we show the visualization of the four different image sequences.
The visualization of these class activation maps are denoted as (a), (b), (c) and (d) respectively. For each subfigure (a), (b), (c) and (d), the
first row is the original image sequences from MARS. The second row is the class activation maps of the baseline model. The third row is
the class activation maps of our proposed model. Compared to the baseline model, our proposed method can fully make use of the relations
of patches to help distinguish different pedestrians with similar appearance and become more robust to occlusion. Best viewed in color.



Figure 4. (a) and (b) are the top 5 retrieval results of the baseline model and our proposed method in the MARS dataset, respectively.
Different from image-based Re-ID, the query and gallery both are image sequences in video-based Re-ID. The green box is the correct
matched result and the red box is the wrong matched result. Each column represents an image sequence. We can see that the baseline
model returns a wrong Rank-5 match due to the problem of occlusion. However our proposed method still returns the correct match in the
presence of occlusion, which shows our proposed method is robust to occlusion by modeling the temporal relations of whole patches in
videos. Best viewed in color.


