
Few-Shot Learning via Embedding Adaptation with Set-to-Set Functions
Supplementary Material

Han-Jia Ye∗

Nanjing University
yehj@lamda.nju.edu.cn

Hexiang Hu
USC

hexiangh@usc.edu

De-Chuan Zhan
Nanjing University

zhandc@lamda.nju.edu.cn

Fei Sha†

USC & Google
fsha@google.com

Contents

1. Details of Baseline Methods 1

2. Details of the Set-to-Set Functions 2
2.1. BiLSTM as the Set-to-Set Transformation . . 2
2.2. DeepSets as the Set-to-Set Transformation . 2
2.3. GCN as the Set-to-Set Transformation 2
2.4. Transformer as the Set-to-Set Transformation 2
2.5. Extension to transductive FSL 3

3. Implementation Details 4

4. Additional Experimental Results 5
4.1. Main Results 5
4.2. Ablation Studies 6
4.3. Few-Shot Domain Generalization 8
4.4. Additional Discussions on Transductive FSL 8
4.5. More Generalized FSL Results 8
4.6. Large-Scale Low-Shot Learning 8

1. Details of Baseline Methods

In this section, we describe two important embedding
learning baselines i.e., Matching Network (MatchNet) [26]
and Prototypical Network (ProtoNet) [20], to implement the
prediction function f(xtest;Dtrain) in the few-shot learn-
ing framework.

MatchNet and ProtoNet. Both MatchNet and ProtoNet
stress the learning of the embedding function E from the
source task data DS with a meta-learning routine similar to
Alg. 1 in the main text. We omit the super-script S since
the prediction strategies can apply to tasks from both SEEN
and UNSEEN sets.

Given the training data Dtrain = {xi,yi}NM
i=1 of an M -

shot N -way classification task, we can obtain the embed-

∗Work mostly done when the author was a visiting scholar at USC.
†On leave from USC

ding of each training instance based on the function E:1

φ(xi) = E(xi), ∀xi ∈ Xtrain (1)

To classify a test instance xtest, we perform the nearest
neighbor classification , i.e.,

ŷtest ∝ exp
(
γ · sim(φxtest , φxi

)
)
· yi (2)

=
exp

(
γ · sim(φxtest , φxi

)
)∑

xi′∈Xtrain
exp

(
γ · sim(φxtest , φxi′)

) · yi

=
∑

(xi,yi)∈Dtrain

exp
(
γ · sim(φxtest , φxi

)
)∑

xi′∈Xtrain
exp

(
γ · sim(φxtest , φxi′)

) · yi

Here, MatchNet finds the most similar training instance to
the test one, and assigns the label of the nearest neigh-
bor to the test instance. Note that sim represents the co-
sine similarity, and γ > 0 is the scalar temperature value
over the similarity score, which is found important em-
pirically [13]. During the experiments, we tune this tem-
perature value carefully, ranging from the reciprocal of
{0.1, 1, 16, 32, 64, 128}.2

The ProtoNet has two key differences compared with the
MatchNet. First, when M > 1 in the target task, ProtoNet
computes the mean of the same class embeddings as the
class center (prototype) in advance and classifies a test in-
stance by computing its similarity to the nearest class center
(prototype). In addition, it uses the negative distance rather
than the cosine similarity as the similarity metric:

cn =
1

M

∑
yi=n

φ(xi), ∀n = 1, . . . , N (3)

ŷtest ∝ exp
(
γ · ‖φxtest − cn‖22

)
· yn

=

N∑
n=1

exp
(
− γ‖φxtest − cn‖22

)∑N
n′=1 exp

(
− γ‖φxtest − cn′‖22

)yn (4)

1In the following, we use φ(xi) and φxi exchangeably to represent the
embedding of an instance xi based on the mapping φ.

2In experiments, we find the temperature scale over logits influences
the model training a lot when we optimize based on pre-trained weights.

Similar to the aforementioned scalar temperature for Match-
Net, in Eq. 4 we also consider the scale γ. Here we abuse
the notation by using yi = n to enumerate the instances
with label n, and denote yn as the one-hot coding of the n-
th class. Thus Eq. 4 outputs the probability to classify xtest

to the N classes.
In the experiments, we find ProtoNet incorporates better

with FEAT. When there is more than one shot in each class,
we average all instances per class in advance by Eq. 3 before
inputting them to the set-to-set transformation. This pre-
average manner makes more precise embedding for each
class and facilitates the “downstream” embedding adapta-
tion. We will validate this in the additional experiments.

2. Details of the Set-to-Set Functions
In this section, we provide details about four imple-

mentations of the set-to-set embedding adaptation function
T, i.e., the BILSTM, DEEPSETS, GCN, and the TRANS-
FORMER. The last one is the key component in our Few-
shot Embedding Adaptation with Transformer (FEAT) ap-
proach. Then we will introduce the configuration of the
multi-layer/multi-head transformer, and the setup of the
transformer for the transductive Few-Shot Learning (FSL).

2.1. BiLSTM as the Set-to-Set Transformation

Bidirectional LSTM (BILSTM) [7, 26] is one of the
common choice to instantiate the set-to-set transformation,
where the addition between the input and the hidden layer
outputs of each BILSTM cell leads to the adapted embed-
ding. In detail, we have

{ ~φ(x), ~φ(x)} = BILSTM({φ(x)}); ∀x ∈ Xtrain (5)

Where ~φ(x) and ~φ(x) are the hidden layer outputs of the
two LSTM models for each instance embedding in the input
set. Then we get the adapted embedding as

ψ(x) = φ(x) + ~φ(x) + ~φ(x) (6)

It is notable that the output of the BILSTM suppose to de-
pend on the order of the input set. Vinyals et al. [26] pro-
pose to use the Fully Conditional Embedding to encode
the context of both the test instance and the support set
instances based on BILSTM and LSTM w/ Attention mod-
ule. Different from [26], we apply the set-to-set embedding
adaptation only over the support set, which leads to a fully
inductive learning setting.

2.2. DeepSets as the Set-to-Set Transformation

Deep sets [32] suggests a generic aggregation function
over a set should be the transformed sum of all elements in
this set. Therefore, a very simple set-to-set transformation
baseline involves two components, an instance centric rep-
resentation combined with a set context representation. For

any instance x ∈ Xtrain, we define its complementary set
as x{. Then we implement the set transformation by:

ψ(x) = φ(x) + g([φ(x);
∑

xi′∈x{

h(φ(xi′))]) (7)

In Eq. 7, g and h are transformations which map the em-
bedding into another space and increase the representation
ability of the embedding. Two-layer multi-layer perception
(MLP) with ReLU activation is used to implement these two
mappings. For each instance, embeddings in its comple-
mentary set are first combined into a vector as the context,
and then this vector is concatenated with the input embed-
ding to obtain the residual component of the adapted em-
bedding. This conditioned embedding takes other instances
in the set into consideration, and keeps the “set (permuta-
tion invariant)” property. Finally, we determine the label
with the newly adapted embedding ψ as Eq. 4. An illustra-
tion of the DeepSets notation in the embedding adaptation
can be found in Figure 1 (c). The summation operator in
Eq. 7 could also be replaced as the maximum operator, and
we find the maximum operator works better than summa-
tion operator in our experiments.

2.3. GCN as the Set-to-Set Transformation

Graph Convolutional Networks (GCN) [10, 19] propa-
gate the relationship between instances in the set. We first
construct a degree matrix A ∈ RNK×NK to represent the
similarity between instances in a set. If two instances xi and
xj come from the same class, then we set the corresponding
element Aij in A to 1, otherwise we have Aij = 0. Based
on A, we build the “normalized” adjacency matrix S for a
given set with added self-loops S = D−

1
2 (A + I)D−

1
2 .

I ∈ RNK×NK is the identity matrix, and D is the diagonal
matrix whose elements are equal to the sum of elements in
the corresponding row ofA+I , i.e., Dii =

∑
j Aij +1 and

Dij = 0 if i 6= j. Let Φ0 = {φx ; ∀x ∈ Xtrain} be the
concatenation of all the instance embeddings in the training
set Xtrain. We use the super-script to denote the generation
of the instance embedding matrix. The relationship between
instances could be propagated based on S, i.e.,

Φt+1 = ReLU(SΦtW) , t = 0, 1, . . . , T − 1 (8)

W is a learned a projection matrix for feature transforma-
tion. In GCN, the embedding in the set is transformed based
on Eq. 8 multiple times (we propagate the embedding set
two times during the experiments), and the final propagated
embedding set ΦT gives rise to the ψx.

2.4. Transformer as the Set-to-Set Transformation

In this section, we describe in details about our Few-Shot
Embedding Adaptation w/ Transformer (FEAT) approach,
specifically how to use the transformer architecture [24] to

Classification

Scores

Embedding

Adaptation

CNN CNN CNN CNN

Soft Nearest

Neighbor

Set-to-Set Function

(a) Embedding Adaptation (b) Transformer as the Set-to-Set Function (c) DeepSets as Set-to-Set Function

Layer Norm FC

FC

FC FC FC FC FC FC FC FC FC

SUM

CAT

Scaled Dot
Product

Train Instance

Test Instance

Task Agnostic
Embedding

Task Specific
Embedding

Figure 1: Illustration of two embedding adpatation methods considered in the paper. (a) shows the main flow of Few-Shot Embedding
Adaptation, while (b) and (c) demonstrate the workflow of Transformer and DeepSets respectively.

implement the set-to-set function T, where self-attention
mechanism facilitates the instance embedding adaptation
with consideration of the contextual embeddings.

As mentioned before, the transformer is a store of triplets
in the form of (query, key, and value). Elements in the query
set are the ones we want to do the transformation. The trans-
former first matches a query point with each of the keys by
computing the “query” – “key” similarities. Then the prox-
imity of the key to the query point is used to weight the
corresponding values of each key. The transformed input
acts as a residual value which will be added to the input.

Basic Transformer. Following the definitions in [24], we
use Q, K, and V to denote the set of the query, keys, and
values, respectively. All these sets are implemented by dif-
ferent combinations of task instances.

To increase the flexibility of the transformer, three sets
of linear projections (WQ ∈ Rd×d′ , WK ∈ Rd×d′ , and
WV ∈ Rd×d′) are defined, one for each set.3 The points in
sets are first projected by the corresponding projections

Q = W>Q
[
φxq

; ∀xq ∈ Q
]
∈ Rd′×|Q|

K = W>K
[
φxk

; ∀xk ∈ K
]
∈ Rd′×|K|

V = W>V
[
φxv ; ∀xv ∈ V

]
∈ Rd′×|V|

(9)

|Q|, |K|, and |V| are the number of elements in the sets
Q, K, and V respectively. Since there is a one-to-one corre-
spondence between elements inK and V we have |K| = |V|.

The similarity between a query point xq ∈ Q and the list
of keys K is then computed as “attention”:

αqk ∝ exp

(
φ>xq

WQ ·K√
d

)
; ∀xk ∈ K (10)

αq,: = softmax

(
φ>xq

WQ ·K√
d

)
∈ R|K| (11)

3For notation simplicity, we omit the bias in the linear projection here.

The k-th element αqk in the vector αq,: reveals the particu-
lar proximity between xk and xq . The computed attention
values are then used as weights for the final embedding xq:

ψ̃xq
=
∑
k

αqkV:,k (12)

ψxq
= τ

(
φxq

+W>FCψ̃xq

)
(13)

V:,k is the k-th column of V . WFC ∈ Rd′×d is the
projection weights of a fully connected layer. τ com-
pletes a further transformation, which is implemented by
the dropout [21] and layer normalization [1]. The whole
flow of transformer in our FEAT approach can be found in
Figure 1 (b). With the help of transformer, the embeddings
of all training set instances are adapted (we denote this ap-
proach as FEAT).

Multi-Head Multi-Layer Transformer. Following [24],
an extended version of the transformer can be built with
multiple parallel attention heads and stacked layers. As-
sume there are totally H heads, the transformer concate-
nates multiple attention-transformed embeddings, and then
uses a linear mapping to project the embedding to the orig-
inal embedding space (with the original dimensionality).
Besides, we can take the transformer as a feature encoder
of the input query instance. Therefore, it can be applied
over the input query multiple times (with different sets of
parameters), which gives rise to the multi-layer transformer.
We discuss the empirical performances with respect to the
change number of heads and layers in § 4.

2.5. Extension to transductive FSL

Facilitated by the flexible set-to-set transformer in
Eq. 13, our adaptation approach can naturally be extended
to the transductive FSL setting.

When classifying test instance xtest in the transdutive
scenario, other test instances Xtest from the N categories

would also be available. Therefore, we enrich the trans-
former’s query and key/value sets

Q = K = V = Xtrain ∪ Xtest (14)

In this manner, the embedding adaptation procedure would
also consider the structure among unlabeled test instances.
When the number of shots K > 1, we average the embed-
ding of labeled instances in each class first before combin-
ing them with the test set embeddings.

3. Implementation Details
Backbone architecture. We consider three backbones, as
suggested in the literature, as the instance embedding func-
tion E for the purpose of fair comparisons. We resize the
input image to 84× 84× 3 before using the backbones.

• ConvNet. The 4-layer convolution network [20, 23, 26]
contains 4 repeated blocks. In each block, there is a con-
volutional layer with 3×3 kernel, a Batch Normalization
layer [8], a ReLU, and a Max pooling with size 2. We
set the number of convolutional channels in each block
as 64. A bit different from the literature, we add a global
max pooling layer at last to reduce the dimension of the
embedding. Based on the empirical observations, this
will not influence the results, but reduces the computa-
tion burden of later transformations a lot.

• ResNet. We use the 12-layer residual network in [11].4

The DropBlock [3] is used in this ResNet architecture
to avoid over-fitting. A bit different from the ResNet-12
in [11], we apply a global average pooling after the final
layer, which leads to 640 dimensional embeddings.5

• WRN. We also consider the Wide residual network [18,
31]. We use the WRN-28-10 structure as in [15, 18],
which sets the depth to 28 and width to 10. After a global
average pooling in the last layer of the backbone, we get
a 640 dimensional embedding for further prediction.

Datasets. Four datasets, MiniImageNet [26],
TieredImageNet [16], Caltech-UCSD Birds (CUB)
200-2011 [27], and OfficeHome [25] are investigated in
this paper. Each dataset is split into three parts based on
different non-overlapping sets of classes, for model training
(a.k.a. meta-training in the literature), model validation
(a.k.a. meta-val in the literature), and model evaluation
(a.k.a. meta-test in the literature). The CUB dataset is

4The source code of the ResNet is publicly available on https://
github.com/kjunelee/MetaOptNet

5We use the ResNet backbone with input image size 80 × 80 ×
3 from [15] in the old version of our paper [30], whose source
code of ResNet is publicly available on https://github.com/
joe-siyuan-qiao/FewShot-CVPR. Empirically we find the
ResNet-12 [11] works better than our old ResNet architecture.

initially designed for fine-grained classification. It contains
in total 11,788 images of birds over 200 species. On CUB,
we randomly sampled 100 species as SEEN classes, another
two 50 species are used as two UNSEEN sets for model
validation and evaluation [23]. For all images in the CUB
dataset, we use the provided bounding box to crop the
images as a pre-processing [23]. Before input into the
backbone network, all images in the dataset are resized
based on the requirement of the network.

Pre-training strategy. As mentioned before, we apply an
additional pre-training strategy as suggested in [15, 18].
The backbone network, appended with a softmax layer, is
trained to classify all classes in the SEEN class split (e.g., 64
classes in the MiniImageNet) with the cross-entropy loss.
In this stage, we apply image augmentations like random
crop, color jittering, and random flip to increase the gen-
eralization ability of the model. After each epoch, we val-
idate the performance of the pre-trained weights based on
its few-shot classification performance on the model vali-
dation split. Specifically, we randomly sample 200 1-shot
N -way few-shot learning tasks (N equals the number of
classes in the validation split, e.g., 16 in the MiniImageNet),
which contains 1 instance per class in the support set and
15 instances per class for evaluation. Based on the penulti-
mate layer instance embeddings of the pre-trained weights,
we utilize the nearest neighbor classifiers over the few-shot
tasks and evaluate the quality of the backbone. We select
the pre-trained weights with the best few-shot classifica-
tion accuracy on the validation set. The pre-trained weights
are used to initialize the embedding backbone E, and the
weights of the whole model are then optimized together dur-
ing the model training.

Transformer Hyper-parameters. We follow the archi-
tecture as presented in [24] to build our FEAT model.
The hidden dimension d′ for the linear transformation in
our FEAT model is set to 64 for ConvNet and 640 for
ResNet/WRN. The dropout rate in transformer is set as 0.5.
We empirically observed that the shallow transformer (with
one set of projection and one stacked layer) gives the best
overall performance (also studied in § 4.2).

Optimization. Following the literature, different optimiz-
ers are used for the backbones during the model training.
For the ConvNet backbone, stochastic gradient descent with
Adam [9] optimizer is employed, with the initial learning
rate set to be 0.002. For the ResNet and WRN backbones,
vanilla stochastic gradient descent with Nesterov accelera-
tion is used with an initial rate of 0.001. We fix the weight
decay in SGD as 5e-4 and momentum as 0.9. The sched-
ule of the optimizers is tuned over the validation part of
the dataset. As the backbone network is initialized with the

https://github.com/kjunelee/MetaOptNet
https://github.com/kjunelee/MetaOptNet
https://github.com/joe-siyuan-qiao/FewShot-CVPR
https://github.com/joe-siyuan-qiao/FewShot-CVPR

Table 1: Few-shot classification accuracy± 95% confidence interval on MiniImageNet with ConvNet and ResNet backbones. Our imple-
mentation methods are measured over 10,000 test trials.

Setups→ 1-Shot 5-Way 5-Shot 5-Way
Backbone Network→ ConvNet ResNet ConvNet ResNet

MatchNet [26] 43.40± 0.78 - 51.09± 0.71 -
MAML [2] 48.70± 1.84 - 63.11± 0.92 -
ProtoNet [20] 49.42± 0.78 - 68.20± 0.66 -
RelationNet [22] 51.38± 0.82 - 67.07± 0.69 -
PFA [15] 54.53± 0.40 - 67.87± 0.20 -
TADAM [13] - 58.50± 0.30 - 76.70± 0.30

MetaOptNet [11] - 62.64± 0.61 - 78.63± 0.46

Baselines
MAML 49.24± 0.21 58.05± 0.10 67.92± 0.17 72.41± 0.20

MatchNet 52.87± 0.20 65.64± 0.20 67.49± 0.17 78.72± 0.15

ProtoNet 52.61± 0.20 62.39± 0.21 71.33± 0.16 80.53± 0.14

Embedding Adaptation
BILSTM 52.13± 0.20 63.90± 0.21 69.15± 0.16 80.63± 0.14

DEEPSETS 54.41± 0.20 64.14± 0.22 70.96± 0.16 80.93± 0.14

GCN 53.25± 0.20 64.50± 0.20 70.59± 0.16 81.65± 0.14

Ours: FEAT 55.15± 0.20 66.78± 0.20 71.61± 0.16 82.05± 0.14

Table 2: Few-shot classification performance with Wide
ResNet (WRN)-28-10 backbone on MiniImageNet dataset (mean
accuracy±95% confidence interval). Our implementation meth-
ods are measured over 10,000 test trials.

Setups→ 1-Shot 5-Way 5-Shot 5-Way

PFA [15] 59.60± 0.41 73.74± 0.19

LEO [18] 61.76± 0.08 77.59± 0.12

SimpleShot [28] 63.50± 0.20 80.33± 0.14

ProtoNet (Ours) 62.60± 0.20 79.97± 0.14

Ours: FEAT 65.10 ± 0.20 81.11 ± 0.14

Table 3: Few-shot classification performance with Wide ResNet
(WRN)-28-10 backbone on TieredImageNet dataset (mean
accuracy±95% confidence interval). Our implementation meth-
ods are measured over 10,000 test trials.

Setups→ 1-Shot 5-Way 5-Shot 5-Way

LEO [18] 66.33± 0.05 81.44± 0.09

SimpleShot [28] 69.75± 0.20 85.31± 0.15

Ours: FEAT 70.41 ± 0.23 84.38 ± 0.16

pre-trained weights, we scale the learning rate for those pa-
rameters by 0.1.

Table 4: Few-shot classification performance with ConvNet back-
bone on CUB dataset (mean accuracy±95% confidence interval).
Our implementation methods are measured over 10,000 test trials.

Setups→ 1-Shot 5-Way 5-Shot 5-Way

MatchNet [26] 61.16 ± 0.89 72.86 ± 0.70

MAML [2] 55.92 ± 0.95 72.09 ± 0.76

ProtoNet [20] 51.31 ± 0.91 70.77 ± 0.69

RelationNet [22] 62.45 ± 0.98 76.11 ± 0.69

Instance Embedding
MatchNet 67.73 ± 0.23 79.00 ± 0.16

ProtoNet 63.72 ± 0.22 81.50 ± 0.15

Embedding Adaptation
BILSTM 62.05 ± 0.23 73.51 ± 0.19

DEEPSETS 67.22 ± 0.23 79.65 ± 0.16

GCN 67.83 ± 0.23 80.26 ± 0.15

Ours: FEAT 68.87 ± 0.22 82.90 ± 0.15

4. Additional Experimental Results

In this section, we will show more experimental results
over the MiniImageNet/CUB dataset, the ablation studies,
and the extended few-shot learning.

4.1. Main Results

The full results of all methods on the MiniImageNet can
be found in Table 1. The results of MAML [2] optimized
over the pre-trained embedding network are also included.

5 10 15 20
Number of categories per task

30
35
40
45
50
55
60
65
70
75

M
ea

n
ac

cu
ra

cy
 (

in
 %

)

70.7

55.9

47.5

41.9

71.3

56.5

48.2

42.4

71.2

56.6

48.2

42.5

71.8

57.0

48.8

43.2

Methods
BILSTM
DeepSets
GCN
FEAT

(a) Way Interpolation

5 10 15 20
Number of categories per task

30
35
40
45
50
55
60
65
70
75

69.2

52.9

43.6

37.5

71.0

55.9

47.4

41.8

70.6

56.0

47.6

41.9

71.6

56.7

48.2

42.6

Methods
BILSTM
DeepSets
GCN
FEAT

(b) Way Extrapolation

Figure 2: Interpolation and Extrapolation of few-shot tasks
from the “way” perspective. First, We train various embedding
adaptation models on 5-shot 20-way (a) or 5-way (b) classification
tasks and evaluate models on unseen tasks with different number
of classes (N={5, 10, 15, 20}). It shows that FEAT is superior in
terms of way interpolation and extrapolation ability.

Table 5: Ablation studies on whether the embedding adaptation
improves the discerning quality of the embeddings. After embed-
ding adaptation, FEAT improves w.r.t. the before-adaptation em-
beddings a lot for Few-shot classification.

1-Shot 5-Way 5-Shot 5-Way

Pre-Adapt 51.60± 0.20 70.40± 0.16

Post-Adapt 55.15± 0.20 71.61± 0.16

We re-implement the ConvNet backbone of MAML and cite
the MAML results over the ResNet backbone from [18]. It
is also noteworthy that the FEAT gets the best performance
among all popular methods and baselines.

We also investigate the Wide ResNet (WRN) back-
bone over MiniImageNet, which is also the popular one
used in [15, 18]. SimpleShot [28] is a recent proposed
embedding-based few-shot learning approach that takes full
advantage of the pre-trained embeddings. We cite the re-
sults of PFA [15], LEO [18], and SimpleShot [28] from
their papers. The results can be found in Table 2. We re-
implement ProtoNet and our FEAT approach with WRN.
It is notable that in this case, our FEAT achieves much
higher promising results than the current state-of-the-art
approaches. Table 3 shows the classification results with
WRN on the TieredImageNet data set, where our FEAT still
keeps its superiority when dealing with 1-shot tasks.

Table 4 shows the 5-way 1-shot and 5-shot classification
results on the CUB dataset based on the ConvNet back-
bone. The results on CUB are consistent with the trend
on the MiniImageNet dataset. Embedding adaptation in-
deed assists the embedding encoder for the few-shot clas-
sification tasks. Facilitated by the set function property,
the DEEPSETS works better than the BILSTM counterpart.
Among all the results, the transformer based FEAT gets the
top tier results.

Table 6: Ablation studies on the position to average the same-
class embeddings when there are multiple shots per class in FEAT

(tested on the 5-Way tasks with different numbers of shots). “Pre-
Avg” and “Post-Avg” means we get the embedding center for each
class before or after the set-to-set transformation, respectively.

Setups→ Pre-Avg Post-Avg

5 71.61± 0.16 70.70± 0.16

15 77.76± 0.14 76.58± 0.14

30 79.66± 0.13 78.77± 0.13

Table 7: Ablation studies on the number of heads in the Trans-
former of FEAT (with number of layers fixes to one).

Setups→ 1-Shot 5-Way 5-Shot 5-Way

1 55.15± 0.20 71.57± 0.16

2 54.91± 0.20 71.44± 0.16

4 55.05± 0.20 71.63± 0.16

8 55.22± 0.20 71.39± 0.16

Table 8: Ablation studies on the number of layers in the Trans-
former of FEAT (with number of heads fixes to one).

Setups→ 1-Shot 5-Way 5-Shot 5-Way

1 55.15± 0.20 71.57± 0.16

2 55.42± 0.20 71.44± 0.16

3 54.96± 0.20 71.63± 0.16

4.2. Ablation Studies

In this section, we perform further analyses for our pro-
posed FEAT and its ablated variants classifying in the Pro-
toNet manner, on the MiniImageNet dataset, using the Con-
vNet as the backbone network.

Do the adapted embeddings improve the pre-adapted
embeddings? We report few-shot classification results by
using the pre-adapted embeddings of support data (i.e., the
embedding before adaptation), against those using adapted
embeddings, for constructing classifiers. Table 5 shows that
task-specific embeddings after adaptation improves over
task-agnostic embeddings in few-shot classifications.

Can FEAT possesses the characteristic of the set func-
tion? We test four set-to-set transformation implementa-
tions, namely the BILSTM, the DEEPSETS, the GCN, and
the Transformer (FEAT), w.r.t. two important properties
of the set function, i.e., way interpolation and way ex-
trapolation. In particular, the few-shot learning model is
first trained with 5-shot 20-way tasks. Then the learned
model is required to evaluate different 5-shot tasks with

N = {5, 10, 15, 20} (Extrapolation). Similarly, for interpo-
lation, the model is trained with 5-shot 20-way tasks in ad-
vance and then evaluated on the previous multi-way tasks.
The classification change results can be found in Figure 2
(a) and (b). BILSTM cannot deal with the size change of the
set, especially in the task extrapolation. In both cases, FEAT
still gets improvements in all configurations of N .

When to average the same-class embeddings? When
there is more than one instance per class, i.e. M > 1, we
average the instances in the same class and use the class
center to make predictions as in Eq. 3. There are two po-
sitions to construct the prototypes in FEAT — before the
set-to-set transformation (Pre-Avg) and after the set-to-set
transformation (Post-Avg). In Pre-Avg, we adapt the em-
beddings of the centers, and a test instance is predicted
based on its distance to the nearest adapted center; while
in Post-Avg, the instance embeddings are adapted by the
set-to-set function first, and the class centers are computed
based on the adapted instance embeddings. We investigate
the two choices in Table 6, where we fix the number of ways
to 5 (N = 5) and change the number of shots (M) among
{5, 15, 30}. The results demonstrate the Pre-Avg version
performs better than the Post-Avg in all cases, which shows
a more precise input of the set-to-set function by averaging
the instances in the same class leads to better results. So we
use the Pre-Avg strategy as a default option in our experi-
ments.

Will deeper and multi-head transformer help? In our
current implementation of the set-to-set transformation
function, we make use of a shallow and simple transformer,
i.e., one layer and one head (set of projection). From [24],
the transformer can be equipped with complex components
using multiple heads and deeper stacked layers. We evalu-
ate this augmented structure, with the number of attention
heads increases to 2, 4, 8, as well as with the number of
layers increases to 2 and 3. As in Table 7 and Table 8, we
empirically observe that more complicated structures do not
result in improved performance. We find that with more
layers of transformer stacked, the difficulty of optimization
increases and it becomes harder to train models until their
convergence. Whilst for models with more heads, the mod-
els seem to over-fit heavily on the training data, even with
the usage of auxiliary loss term (like the contrastive loss in
our approach). It might require some careful regularizations
to prevent over-fitting, which we leave for future work.

The effectiveness of contrastive loss. Table 9 show the
few-shot classification results with different weight values
(λ) of the contrastive loss term for FEAT. From the results,
we can find that the balance of the contrastive term in the

Table 9: Ablation studies on effects of the contrastive learning of
the set-to-set function on FEAT.

Setups→ 1-Shot 5-Way 5-Shot 5-Way

λ = 10 53.92 ± 0.20 70.41 ± 0.16

λ = 1 54.84 ± 0.20 71.00 ± 0.16

λ = 0.1 55.15 ± 0.20 71.61 ± 0.16

λ = 0.01 54.67 ± 0.20 71.26 ± 0.16

Table 10: Ablation studies on the prediction strategy (with cosine
similarity or euclidean distance) of FEAT.

Setups→ 1-Shot 5-Way 5-Shot 5-Way

Backbone→ ConvNet ResNet ConvNet ResNet

Cosine Similarity-based Prediction
FEAT 54.64± 0.20 66.26± 0.20 71.72± 0.16 81.83± 0.15

Euclidean Distance-based Prediction
FEAT 55.15± 0.20 66.78± 0.20 71.61± 0.16 82.05± 0.14

Table 11: Cross-Domain 1-shot 5-way classification results of the
FEAT approach.

C→ C C→ R R→ R

Supervised 34.38±0.16 29.49±0.16 37.43±0.16

ProtoNet 35.51±0.16 29.47±0.16 37.24±0.16

FEAT 36.83±0.17 30.89±0.17 38.49±0.16

learning objective can influence the final results. Empiri-
cally, we set λ = 0.1 in our experiments.

The influence of the prediction strategy. We investi-
gate two embedding-based prediction ways for the few-shot
classification, i.e., based on the cosine similarity and the
negative euclidean distance to measure the relationship be-
tween objects, respectively. We compare these two choices
in Table 10. Two strategies in Table 10 only differ in
their similarity measures. In other words, with more than
one shot per class in the task training set, we average the
same class embeddings first, and then make classification
by computing the cosine similarity or the negative euclidean
distance between a test instance and a class prototype. Dur-
ing the optimization, we tune the logits scale temperature
for both these methods. We find that using the euclidean
distance usually requires small temperatures (e.g., γ = 1

64)
while a large temperature (e.g., γ = 1) works well with the
normalized cosine similarity. The former choice achieves a
slightly better performance than the latter one.

Table 12: Results of models for transductive FSL with ConvNet
backbone on MiniImageNet. We cite the results of Semi-ProtoNet
and TPN from [16] and [14] respectively. For TEAM [14], the au-
thors do not report the confidence intervals, so we set them to 0.00
in the table. FEAT† and FEAT‡ adapt embeddings with the joint
set of labeled training and unlabeled test instances, while make
prediction via ProtoNet and Semi-ProtoNet respectively.

Setups→ 1-Shot 5-Way 5-Shot 5-Way

Standard
ProtoNet 52.61 ± 0.20 71.33 ± 0.16

FEAT 55.15 ± 0.20 71.61 ± 0.16

Transductive
Semi-ProtoNet [16] 50.41 ± 0.31 64.39 ± 0.24

TPN [12] 55.51 ± 0.84 69.86 ± 0.67

TEAM [14] 56.57 ± 0.00 72.04 ± 0.00

Semi-ProtoNet (Ours) 55.50 ± 0.10 71.76 ± 0.08

FEAT† 56.49 ± 0.16 72.65 ± 0.20

FEAT‡ 57.04 ± 0.16 72.89 ± 0.20

4.3. Few-Shot Domain Generalization

We show that FEAT learns to adapt the intrinsic structure
of tasks, and generalize across domains, i.e., predicting
test instances even when the visual appearance is changed.
Setups. We train a few-shot learning model in the standard
domain and evaluate it with cross-domain tasks, where the
N -categories are aligned but domains are different. In de-
tail, a model is trained on tasks from the “Clipart” domain
of OfficeHome dataset [25], then the model is required to
generalize to both “Clipart (C)” and “Real World (R)” in-
stances. In other words, we need to classify complex real
images by seeing only a few sketches, or even based on the
instances in the “Real World (R)” domain.
Results. Table 11 gives the quantitative results. Here, the
“supervised” refers to a model trained with standard clas-
sification and then is used for the nearest neighbor classi-
fier with its penultimate layer’s output feature. We observe
that ProtoNet can outperform this baseline on tasks when
evaluating instances from “Clipart” but not ones from “real
world”. However, FEAT can improve over “real world” few-
shot classification even only seeing the support data from
“Clipart”. Besides, when the support set and the test set
of the target task are sampled from the same but new do-
mains, e.g., the training and test instances both come from
“real world”, FEAT also improves the classification accuracy
w.r.t. the baseline methods. It verifies the domain general-
ization ability of the FEAT approach.

4.4. Additional Discussions on Transductive FSL

We list the results of the transductive few-shot classifi-
cation in Table 12, where the unlabeled test instances ar-
rive simultaneously, so that the common structure among

the unlabeled test instances could be captured. We com-
pare with three approaches, Semi-ProtoNet [16], TPN [12],
and TEAM [14]. Semi-ProtoNet utilizes the unlabeled in-
stances to facilitate the computation of the class center and
makes predictions similar to the prototypical network; TPN
meta learns a label propagation way to take the unlabeled in-
stances relationship into consideration; TEAM explores the
pairwise constraints in each task, and formulates the em-
bedding adaptation into a semi-definite programming form.
We cite the results of Semi-ProtoNet from [16], and cite
the results of TPN and TEAM from [14]. We also re-
implement Semi-ProtoNet with our pre-trained backbone
(the same pre-trained ConvNet weights as the standard few-
shot learning setting) for a fair comparison.

In this setting, our model leverages the unlabeled test in-
stances to augment the transformer as discussed in § 2.4
and the embedding adaptation takes the relationship of all
test instances into consideration. Based on the adapted em-
bedding by the joint set of labeled training instances and
unlabeled test instances, we can make predictions with two
strategies. First, we still compute the center of the labeled
instances, while such adapted embeddings are influenced by
the unlabeled instances (we denote this approach as FEAT†,
which works the same way as standard FEAT except the aug-
mented input of the embedding transformation function);
Second, we consider to take advantage of the unlabeled in-
stances and use their adapted embeddings to construct a bet-
ter class prototype as in Semi-ProtoNet (we denote this ap-
proach as FEAT‡).

By using more unlabeled test instances in the transduc-
tive environment, FEAT† achieves further performance im-
provement compared with the standard FEAT, which verifies
the unlabeled instances could assist the embedding adapta-
tion of the labeled ones. With more accurate class center
estimation, FEAT‡ gets a further improvement. The per-
formance gain induced by the transductive FEAT is more
significant in the one-shot learning setting compared with
the five-shot scenario, since the helpfulness of unlabeled in-
stance decreases when there are more labeled instances.

4.5. More Generalized FSL Results

Here we show the full results of FEAT in the general-
ized few-shot learning setting in Table 13, which includes
both the 1-shot and 5-shot performance. All methods are
evaluated on instances composed by SEEN classes, UNSEEN
classes, and both of them (COMBINED), respectively. In
the 5-shot scenario, the performance improvement mainly
comes from the improvement of over the UNSEEN tasks.

4.6. Large-Scale Low-Shot Learning

Similar to the generalized few-shot learning, the large-
scale low-shot learning [4, 5, 29] considers the few-shot
classification ability on both SEEN and UNSEEN classes on

Table 13: Results of generalized FEAT with ConvNet backbone on
MiniImageNet. All methods are evaluated on instances composed
by SEEN classes, UNSEEN classes, and both of them (COMBINED),
respectively.

Measures→ SEEN UNSEEN COMBINED

1-shot learning
ProtoNet 41.73±0.03 48.64±0.20 35.69±0.03

FEAT 43.94±0.03 49.72±0.20 40.50±0.03

5-shot learning
ProtoNet 41.06±0.03 64.94±0.17 38.04±0.02

FEAT 44.94±0.03 65.33±0.16 41.68±0.03

Random Chance 1.56 20.00 1.45

Table 14: The top-5 low-shot learning accuracy over all classes
on the large scale ImageNet [17] dataset (w/ ResNet-50).

UNSEEN 1-Shot 2-Shot 5-Shot 10-Shot 20-Shot

ProtoNet [20] 49.6 64.0 74.4 78.1 80.0
PMN [29] 53.3 65.2 75.9 80.1 82.6

FEAT 53.8 65.4 76.0 81.2 83.6

All 1-Shot 2-Shot 5-Shot 10-Shot 20-Shot

ProtoNet [20] 61.4 71.4 78.0 80.0 81.1
PMN [29] 64.8 72.1 78.8 81.7 83.3

FEAT 65.1 72.5 79.3 82.1 83.9

All w/ Prior 1-Shot 2-Shot 5-Shot 10-Shot 20-Shot

ProtoNet [20] 62.9 70.5 77.1 79.5 80.8
PMN [29] 63.4 70.8 77.9 80.9 82.7

FEAT 63.8 71.2 78.1 81.3 83.4

the full ImageNet [17] dataset. There are in total 389 SEEN
classes and 611 UNSEEN classes [5]. We follow the setting
(including the splits) of the prior work [5] and use features
extracted based on the pre-trained ResNet-50 [6]. Three
evaluation protocols are evaluated, namely the top-5 few-
shot accuracy on the UNSEEN classes, on the combined set
of both SEEN and UNSEEN classes, and the calibrated accu-
racy on weighted by selected set prior on the combined set
of both SEEN and UNSEEN classes. The results are listed in
Table 14. We observe that FEAT achieves better results than
others, which further validates FEAT’s superiority in gener-
alized classification setup, a large scale learning setup.

References
[1] L. J. Ba, R. Kiros, and G. E. Hinton. Layer normaliza-

tion. CoRR, abs/1607.06450, 2016. 3
[2] C. Finn, P. Abbeel, and S. Levine. Model-agnostic

meta-learning for fast adaptation of deep networks. In

ICML, pages 1126–1135, 2017. 5
[3] G. Ghiasi, T.-Y. Lin, and Q. V. Le. Dropblock: A

regularization method for convolutional networks. In
NeurIPS, pages 10750–10760. 2018. 4

[4] S. Gidaris and N. Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, pages
4367–4375, 2018. 8

[5] B. Hariharan and R. B. Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In
ICCV, pages 3037–3046, 2017. 8, 9

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, pages 770–
778, 2016. 9

[7] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.
2

[8] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In ICML, pages 448–456, 2015. 4

[9] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In ICLR, 2015. 4

[10] T. N. Kipf and M. Welling. Semi-supervised classi-
fication with graph convolutional networks. In ICLR,
2017. 2

[11] K. Lee, S. Maji, A. Ravichandran, and S. Soatto.
Meta-learning with differentiable convex optimiza-
tion. In CVPR, pages 10657–10665, 2019. 4, 5

[12] Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. J. Hwang,
and Y. Yang. Learning to propagate labels: Trans-
ductive propagation network for few-shot learning. In
ICLR, 2019. 8

[13] B. N. Oreshkin, P. R. López, and A. Lacoste. TADAM:
task dependent adaptive metric for improved few-shot
learning. In NeurIPS, pages 719–729. 2018. 1, 5

[14] L. Qiao, Y. Shi, J. Li, Y. Wang, T. Huang, and Y. Tian.
Transductive episodic-wise adaptive metric for few-
shot learning. In ICCV, pages 3603–3612, 2019. 8

[15] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot
image recognition by predicting parameters from acti-
vations. In CVPR, pages 7229–7238, 2018. 4, 5, 6

[16] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swer-
sky, J. B. Tenenbaum, H. Larochelle, and R. S. Zemel.
Meta-learning for semi-supervised few-shot classifi-
cation. In ICLR, 2018. 4, 8

[17] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. S. Bernstein, A. C. Berg, and F.-F. Li. Imagenet
large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015. 9

[18] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pas-
canu, S. Osindero, and R. Hadsell. Meta-learning with
latent embedding optimization. In ICLR, 2019. 4, 5, 6

[19] V. G. Satorras and J. B. Estrach. Few-shot learning
with graph neural networks. In ICLR, 2018. 2

[20] J. Snell, K. Swersky, and R. S. Zemel. Prototypical

networks for few-shot learning. In NeurIPS, pages
4080–4090. 2017. 1, 4, 5, 9

[21] N. Srivastava, G. E. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Dropout: a sim-
ple way to prevent neural networks from overfitting.
JMLR, 15(1):1929–1958, 2014. 3

[22] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr,
and T. M. Hospedales. Learning to compare: Relation
network for few-shot learning. In CVPR, pages 1199–
1208, 2018. 5

[23] E. Triantafillou, R. S. Zemel, and R. Urtasun. Few-
shot learning through an information retrieval lens. In
NeurIPS, pages 2252–2262. 2017. 4

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, pages 6000–
6010. 2017. 2, 3, 4, 7

[25] H. Venkateswara, J. Eusebio, S. Chakraborty, and
S. Panchanathan. Deep hashing network for unsuper-
vised domain adaptation. In CVPR, pages 5385–5394,
2017. 4, 8

[26] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu,
and D. Wierstra. Matching networks for one shot
learning. In NeurIPS, pages 3630–3638. 2016. 1, 2, 4,
5

[27] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. The Caltech-UCSD Birds-200-2011 Dataset.
Technical Report CNS-TR-2011-001, California Insti-
tute of Technology, 2011. 4

[28] Y. Wang, W.-L. Chao, K. Q. Weinberger, and
L. van der Maaten. Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. CoRR,
abs/1911.04623, 2019. 5, 6

[29] Y.-X. Wang, R. B. Girshick, M. Hebert, and B. Har-
iharan. Low-shot learning from imaginary data. In
CVPR, pages 7278–7286, 2018. 8, 9

[30] H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha. Learning
embedding adaptation for few-shot learning. CoRR,
abs/1812.03664, 2018. 4

[31] S. Zagoruyko and N. Komodakis. Wide residual net-
works. In BMVC, 2016. 4

[32] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos,
R. R. Salakhutdinov, and A. J. Smola. Deep sets. In
NeurIPS, pages 3394–3404. 2017. 2

