
Rethinking Data Augmentation for Image Super-resolution:
A Comprehensive Analysis and a New Strategy

Jaejun Yoo∗

EPFL.
jaejun.yoo88@gmail.com

Namhyuk Ahn∗

Ajou University
aa0dfg@ajou.ac.kr

Kyung-Ah Sohn†

Ajou University
kasohn@ajou.ac.kr

A. Implementation Details

Network modification. To apply CutBlur, the resolution
of the input and output has to match. To satisfy such re-
quirement, we first upsample the input xLR ∈ RW×H×C

to xsLR ∈ RsW×sH×C using bicubic kernel then feed it to
the network. In order to achieve efficient inference, we at-
tach desubpixel layer [9] at the beginning of the network. By
adapting this layer, input is reshaped as xsLR ∈ RW×H×s2C

so that the entire forward pass is performed on the low res-
olution space. Note that such modifications are only for the
synthetic SR task because the other low-level tasks (e.g. de-
noising) have an identical input and output size.

Table 2 shows the performance of original and modified
networks. For both RCAN and EDSR, modified networks
reach the performance of the original one with negligible
increases in the number of the parameters and the infer-
ence time. Note that we measure the inference time on the
NVIDIA V100 GPU using a resolution of 480×320 for the
LR input so that the network generates a 2K SR image.
Augmentation setup. Detailed description and setting of
every augmentation that we used are described in Table 1.
Here, CutMixup, CutBlur, and MoA are the strategies that
we have newly proposed in the paper. The hyper-parameters
are described following the original papers’ notations.

Unless mentioned, at each iteration, we always apply
MoA (p = 1.0) and evenly choose one method from the
augmentation pool. However, we set p = 0.2 for training
SRCNN and CARN on the synthetic SR dataset and p = 0.6
for all the other models for denoising and compression arti-
fact removal tasks, i.e., MoA is applied less. For the realis-
tic SR task (RealSR dataset), we adjust the ratio of MoA to
have CutBlur 40% chance more than the other DA’s, each
of which has 10% chance (40% + 10% + 10% + 10% +
10% + 10% + 10% = 100%).
Evaluation protocol. To evaluate the performance of
the model, we use three metrics: peak-signal-to-noise ra-
tio (PSNR), structural similarity index (SSIM) [12], and
learned perceptual image patch similarity (LPIPS) [16].
PSNR is defined using the maximum pixel value and mean-

squared error between the two images in the log-space.
SSIM [12] measures the structural similarity between two
images based on the luminance, contrast and structure. Note
that we use Y channel only when calculating PSNR and
SSIM unless otherwise specified.

Although high PSNR and high SSIM of an image are
generally interpreted as a good image restoration quality, it
is well known that these metrics cannot represent human
visual perception very well [16]. LPIPS [16] has been re-
cently proposed to address this mismatch. It measures the
diversity of the generated images using the L1 distance be-
tween features extracted from the pre-trained AlexNet [5],
which gives better perceptual distance between two images
than the traditional metrics. For more details, please refer to
the original paper [16].

B. Detailed Analysis

In this section, we describe each experiment that has
been introduced in the Analysis Section. We also provide
the results of feature augmentation methods and the origi-
nal cutout that we excluded in the main text.

Augmentation in feature space. We apply feature augmen-
tations [8, 13] to EDSR [6] and RCAN [17] (Figure 1).
Both Manifold Mixup [8] and ShakeDrop [13] result in in-
ferior performance than the baselines without any augmen-
tation. For example, RCAN fails to learn with both Man-
ifold Mixup and ShakeDrop. For EDSR, Manifold Mixup
is the only one that can be accompanied with, but it also
shows significant performance drop. The reason for the
catastrophic failure of ShakeDrop is because it manipulates
the training signal too much, which induces serious gradient
exploding.

Cutout. As discussed in the paper, using the original
Cutout [2] setting seriously harms the performance. Here,
we demonstrate how Cutout ratio affects the performance
(Figure 2). Removing 0.1% of pixels shows similar perfor-
mance to the baseline, but increasing the dropping propor-
tion to 25% results a huge degradation.

1

Table 1. A description of data augmentations that are used in our final proposed method.
Name Description Default α

Cutout [2] Erase (zero-out) randomly sampled pixels with probability α. Cutout-ed
pixels are discarded when calculating loss by masking removed pixels.

0.001

CutMix [14] Replace randomly selected square-shape region to sub-patch from other
image. The coordinates are calculated as: rx = Unif(0,W), rw =
λW , where λ ∼ N(α, 0.01) (same for ry and rh).

0.7

Mixup [15] Blend randomly selected two images. We use default setting of Feng et
al. [3] which is: I ′ = λIi + (1− λ)Ij , where λ ∼ Beta(α, α).

1.2

CutMixup CutMix with the Mixup-ed image. CutMix and Mixup procedure use
hyper-parameter α1 and α2 respectively.

0.7 / 1.2
(α1 / α2)

RGB perm. Randomly permute RGB channels. -
Blend Blend image with vector v = (v1, v2, v3) , where vi ∼ Unif(α, 1). 0.6

CutBlur Perform CutMix with same image but different resolution, produc-
ing x̂HR→LR and x̂LR→HR. Randomly choose x̂ from the [x̂HR→LR,
x̂LR→HR], then provided selected one as input of the network.

0.7

MoA
(Mixture of Augmentations) Use all data augmentation method described above. Randomly select sin-

gle augmentation from the augmentation pool then apply it.
-

Table 2. Performance (PSNR) and the model size (# parameters
and inference time) comparison between the original (ori.) and
modified (mod.) networks on ×4 scale SR dataset. We borrow the
reported scores from the performance of the original networks.

Model # Params. Time Set14 Urban Manga

RCAN (ori.) 15.6M 0.612s 28.87 26.82 31.22
RCAN (mod.) 15.6M 0.614s 28.86 26.76 31.24
EDSR (ori.) 43.1M 0.334s 29.80 26.64 31.02
EDSR (mod.) 43.2M 0.335s 28.81 26.66 31.06

0 50 100 150 200 250 300
Epochs

20
21
22
23
24
25
26
27
28
29
30

P
S

N
R

RCAN
RCAN + MM
RCAN + SD

(a) RCAN

0 50 100 150 200 250 300
Epochs

20
21
22
23
24
25
26
27
28
29
30

P
S

N
R

EDSR
EDSR + MM
EDSR + SD

(b) EDSR

Figure 1. PSNR (dB) comparison on ten DIV2K (×4) validation
images during training. MM and SD denote the model with Mani-
fold Mixup [8] and ShakeDrop [13], respectively.

C. Experiment Details

CutBlur vs. Giving HR inputs during training. For fair
comparison, we provide HR images with p = 0.33 other-
wise LR images. More specifically, we set the probability
of giving HR input, p to 0.33, which is the same ratio to the
average proportion of the HR region used in CutBlur.

Super-resolve the high resolution image. We quanti-
tatively compare the performance of the baseline and

0 50 100 150 200 250 300
Epochs

27.9
28.1
28.3
28.5
28.7
28.9
29.1
29.3
29.5
29.7
29.9

P
S

N
R

EDSR
EDSR + Cutout (0.1%)
EDSR + Cutout (10%)

Figure 2. PSNR (dB) comparison between the baseline and two
Cutout [2] settings on ten DIV2K (×4) validation images during
training. The gap between two curves varies around 0.1∼0.2 dB.

CutBlur-trained model when the network takes HR images
as input in the test phase (Table 4) and when the network
takes CutBlurred LR input (Table 5). Here, we generated
CutBlurred image by substituting half of the upper part of
the LR to its ground truth HR image. When the network
takes HR images as input, an ideal method should maintain
the input resolution, which would yield infinite (dB) PSNR
and 1.0 SSIM. However, the baseline (w/o CutBlur) results
in a degraded performance because it tends to over-sharpen
the images. This is because the model learns to blindly
super-resolve every given pixel. On the other hand, our pro-
posed method provides the near-identical image. when the
network takes CutBlurred LR input, the performance of the
models without CutBlur are worse than the baseline (bicu-
bic upsample kernel). In contrast, our methods achieve bet-
ter performance than both the baseline (bicubic) and the
models trained without CutBlur.

Such observations are consistently found when using the
mixture of augmentations. Note that although the model

2

Table 3. Quantitative comparison (PSNR / SSIM / LPIPS) on the
photo-realistic SR task using generative models. As a baseline, we
use ESRGAN [10], which shows state-of-the-art performance on
this task.

Dataset
ESRGAN [10] ESRGAN [10] + ours

PSNR↑ / SSIM↑ / LPIPS↓
Set14 26.11 / 0.6937 / 0.143 26.35 / 0.7016 / 0.135
B100 25.39 / 0.6522 / 0.177 25.49 / 0.6556 / 0.172

Urban100 24.49 / 0.7364 / 0.129 24.54 / 0.7383 / 0.127
DIV2K 26.52 / 0.7421 / 0.117 26.68 / 0.7448 / 0.114

without CutBlur (use all the augmentations except Cut-
Blur) can improve the generalization ability compared to
the vanilla EDSR, it still fails to learn such good properties
of CutBlur. Only when we include CutBlur as one of the
augmentation pool, the model could learn not only “how”
but also “where” to super-resolve an image while boosting
its generalization ability in a huge margin.

GAN-based SR models. We also apply MoA to the GAN-
based SR network, ESRGAN [11] and investigated the ef-
fect. ESRGAN is designed to produce photo-realistic SR
image by adopting adversarial loss [4]. As shown in Table
3, ESRGAN with proposed method outperforms the base-
line for both distortion- (PSNR and SSIM) and perceptual-
based (LPIPS) metrics. Such result implies that our method
adequately enhance the GAN-based SR model as well, con-
sidering the perception-distortion trade-off [1].

Gaussian denoising (color). To simulate the over-
smoothing problem in the denoising task, we conduct a
cross-level benchmark test (Table 7) on various noise levels
(σ = [30, 50, 70]) using EDSR [6] and RDN [18] models. In
this setting, we test the trained networks on an unseen noise-
level dataset. We would like to emphasize that such scenario
is common since we cannot guarantee that distortion infor-
mation are provided in advance in real-world applications.
Here, we apply Gaussian noise to the color (RGB) image
when we generate a dataset, and PSNR and SSIM are cal-
culated on the full-RGB dimension.

When we train the model on a mild noise level and test
to a severe noise (e.g. σ = 30→ 50), both the baseline and
proposed models show degraded performance since they
cannot fully eliminate a noise. On the other hand, for se-
vere→mild scenario, models trained with MoA surpass the
baseline on SSIM and LPIPS metrics. Note that the high
PSNR scores of the baselines without MoA is due to the
over-smoothing, which is preferred by PSNR. This can be
easily seen in the additional qualitative results Figure 3. In-
terestingly, the baseline model tends to generate severe ar-
tifacts (4th row, 3rd column) since it handles unseen noise
improperly. In contrast, our proposed method does not have
such artifacts while effectively recovering clean images.

JPEG artifact removal (color). Similar to the Gaussian de-
noising, we train and test the model with various compres-

sion factors (q = [30, 20, 10]). To generate a dataset, we
compress color (RGB) images with different quality levels.
However, unlike the color image denoising task, we use Y
channel only when calculating PSNR and SSIM. Quantita-
tive and qualitative results on this task are shown in Table 8
and Figure 4, respectively.
Super-resolution on unseen scale factor. We also inves-
tigate the generalization ability of our model to the SR
task. To do that, we test the models on unseen scale fac-
tors (×2 and ×3). Here, the models are only trained on
the ×4 scale (Table 6). Our proposed method outperforms
the baseline in various scales and datasets. This tendency is
more significant when the train-test mismatch becomes big-
ger (e.g., scale×2). Figure 5 shows the qualitative compari-
son of the baseline and ours. While the baseline model over-
sharpens the edges producing embossing artifacts, our pro-
posed method effectively super-resolve LR images of the
unseen scale factor during training.
CutBlur in the wild. We provide more results on real-world
out-of-focus photographs that are collected from web (Fig-
ure 6).

3

Table 4. Quantitative comparison (PSNR / SSIM) on artificial SR setup which gives HR image instead of LR. Baseline indicates the
quantitative metrics between the input (HR) and ground-truth (HR) images.

Dataset Baseline EDSR EDSR + mixture of augmentation
w/o CutBlur w/ CutBlur w/o CutBlur w/ CutBlur

DIV2K inf. / 1.0000 22.61 / 0.7072 inf. / 1.0000 27.33 / 0.8571 65.04 / 0.9999
RealSR inf. / 1.0000 23.23 / 0.7543 54.64 / 0.9985 24.87 / 0.8028 46.83 / 0.9951

Table 5. Quantitative comparison (PSNR / SSIM) on artificial SR setup which gives CutBlurred image instead of LR. We generate Cut-
Blurred image by replacing half of the upper region of the LR to HR. Baseline indicates the quantitative metrics between the input
(CutBlurred) and ground-truth (HR) images.

Dataset Baseline EDSR EDSR + mixture of augmentation
w/o CutBlur w/ CutBlur w/o CutBlur w/ CutBlur

DIV2K 29.91 / 0.8799 24.08 / 0.7509 00.00 / 0.0000 27.90 / 0.8468 34.59 / 0.9372
RealSR 30.60 / 0.8883 26.26 / 0.7974 32.50 / 0.9143 27.31 / 0.8244 32.46 / 0.9131

Table 6. Performance comparison on the SR task evaluated on the DIV2K and RealSR dataset. We train the model using scale factor 4 case
and test to scale factor 2 and 3.

Model Test Scale Train Scale (×4)
DIV2K RealSR

EDSR ×2 23.75 (+0.00) / 0.7414 (+0.0000) 27.51 (+0.00) / 0.8273 (+0.0000)
+ proposed 31.27 (+7.52) / 0.8970 (+0.1556) 31.61 (+4.10) / 0.8985 (+0.0712)
EDSR ×3 27.62 (+0.00) / 0.8142 (+0.0000) 29.44 (+0.00) / 0.8467 (+0.0000)
+ proposed 28.40 (+0.78) / 0.8170 (+0.0028) 29.94 (+0.50) / 0.8542 (+0.0075)

Table 7. Performance comparison on the color Gaussian denoising task evaluated on the Kodak24 dataset. We train and test the model on
the various noise levels. LPIPS [16] (lower is better) indicates the perceptual distance between the network output and the ground-truth.

Model Train σ Test (σ = 30) Test (σ = 50) Test (σ = 70)
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

EDSR

30

31.92 / 0.8716 / 0.136 20.78 / 0.3425 / 0.690 16.38 / 0.1867 / 1.004
+ proposed +0.02 / +0.0006 / -0.004 +1.05 / +0.0446 / -0.105 +0.35 / +0.0145 / -0.062

RDN 31.92 / 0.8715 / 0.137 21.61 / 0.3733 / 0.639 16.99 / 0.2040 / 0.974
+ proposed +0.00 / +0.0002 / +0.000 -1.01 / -0.0368 / +0.016 -0.61 / -0.0182 / -0.020

EDSR

50

29.64 / 0.7861 / 0.306 29.66 / 0.8136 / 0.209 21.50 / 0.3553 / 0.687
+ proposed -0.54 / +0.0708 / -0.158 +0.00 / -0.0002 / -0.001 +0.26 / +0.0212 / -0.029

RDN 29.77 / 0.7931 / 0.298 29.63 / 0.8134 / 0.208 23.68 / 0.4549 / 0.519
+ proposed -1.00 / +0.0544 / -0.146 -0.01 / -0.0005 / +0.002 -1.40 / -0.0666 / +0.104

EDSR

70

27.38 / 0.7295 / 0.375 27.95 / 0.7385 / 0.366 28.23 / 0.7689 / 0.273
+ proposed -2.51 / +0.0696 / -0.193 +0.46 / +0.0674 / -0.139 +0.00 / -0.0003 / -0.002

RDN 28.23 / 0.7546 / 0.344 28.13 / 0.7517 / 0.349 28.19 / 0.7684 / 0.275
+ proposed -3.48 / +0.0461 / -0.163 -0.93 / +0.0337 / -0.137 +0.01 / -0.0003 / -0.006

4

Table 8. Performance comparison on the color JPEG artifact removal task evaluated on the LIVE1 [7] dataset. We train and test the model on
the various quality factors. LPIPS [16] (lower is better) indicates the perceptual distance between the network output and the ground-truth.
Unlike the color image denoising task, we use Y channel only when calculating PSNR and SSIM.

Model Train q Test (q = 30) Test (q = 20) Test (q = 10)
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

EDSR

30

33.95 / 0.9227 / 0.118 32.36 / 0.8974 / 0.155 29.17 / 0.8196 / 0.286
+ proposed -0.01 / -0.0002 / +0.001 +0.02 / +0.0003 / +0.001 +0.00 / -0.0005 / +0.001

RDN 33.90 / 0.9220 / 0.121 32.34 / 0.8971 / 0.157 29.20 / 0.8202 / 0.287
+ proposed +0.01 / +0.0003 / -0.003 -0.01 / -0.0001 / -0.001 -0.05 / -0.0017 / +0.002

EDSR

20

33.64 / 0.9174 / 0.130 32.52 / 0.8979 / 0.160 29.67 / 0.8327 / 0.271
+ proposed +0.18 / +0.0037 / -0.008 +0.00 / +0.0001 / -0.001 +0.00 / -0.0005 / -0.001

RDN 33.59 / 0.9164 / 0.132 32.47 / 0.8972 / 0.162 29.65 / 0.8322 / 0.271
+ proposed +0.14 / +0.0031 / -0.005 +0.00 / +0.0001 / +0.001 +0.01 / -0.0003 / +0.001

EDSR

10

32.45 / 0.8992 / 0.154 31.83 / 0.8840 / 0.179 30.14 / 0.8391 / 0.254
+ proposed +0.97 / +0.0179 / -0.020 +0.45 / +0.0104 / -0.011 +0.00 / -0.0001 / +0.001

RDN 32.37 / 0.8967 / 0.166 31.78 / 0.8821 / 0.189 30.10 / 0.8381 / 0.259
+ proposed +0.95 / +0.0187 / -0.023 +0.40 / +0.0106 / -0.013 -0.01 / -0.0002 / +0.003

5

Proposed
(24.60 / 0.7653 / 0.230)

Baseline
(27.99 / 0.7176 / 0.447)

High quality
(PSNR / SSIM / LPIPS)

Low quality (σ=30)
(18.84 / 0.2014 / 0.712)

Proposed
(24.90 / 0.8339 / 0.162)

Baseline
(26.31 / 0.6975 / 0.375)

High quality
(PSNR / SSIM / LPIPS)

Low quality (σ=30)
(18.88 / 0.3199 / 0.635)

Proposed
(24.77 / 0.7097 / 0.236)

Baseline
(27.09 / 0.6567 / 0.504)

High quality
(PSNR / SSIM / LPIPS)

Low quality (σ=30)
(18.73 / 0.2479 / 0.666)

Proposed
(24.93 / 0.8237 / 0.213)

Baseline
(27.27 / 0.6935 / 0.487)

High quality
(PSNR / SSIM / LPIPS)

Low quality (σ=30)
(18.74 / 0.2188 / 0.893)

Figure 3. Comparison of the generalization ability on the color Gaussian denoising task. Both methods are trained on severely distorted
dataset (σ = 70) and tested on the mild case (σ = 30). The baseline over-smooths the inputs or generates artifacts while ours successfully
reconstructs the fine structures.

6

High quality
(PSNR / SSIM / LPIPS)

Proposed
(32.45 / 0.8984 / 0.135)

Baseline
(31.65 / 0.8778 / 0.147)

Low quality (q=30)
(31.31 / 0.8815 / 0.120)

High quality
(PSNR / SSIM / LPIPS)

Proposed
(32.50 / 0.9318 / 0.066)

Baseline
(31.03 / 0.9055 / 0.090)

Low quality (q=30)
(30.01 / 0.8919 / 0.067)

High quality
(PSNR / SSIM / LPIPS)

Proposed
(32.45 / 0.8984 / 0.135)

Baseline
(31.65 / 0.8778 / 0.147)

Low quality (q=30)
(31.31 / 0.8815 / 0.120)

Figure 4. Comparison of the generalization ability on the color JPEG artifact removal task. Both methods are trained on severely compressed
dataset (q = 10) and tested on the mild case (q = 30).

7

High resolution
(PSNR / SSIM)

Proposed
(20.59 / 0.8694)

Baseline
(16.11 / 0.6577)

Low resolution (x2)
(20.32 / 0.8645)

High resolution
(PSNR / SSIM)

Proposed
(25.05 / 0.8426)

Baseline
(16.96 / 0.5460)

Low resolution (x2)
(24.84 / 0.8345)

High resolution
(PSNR / SSIM)

Proposed
(29.63 / 0.8897)

Baseline
(22.30 / 0.7356)

Low resolution (x2)
(29.71 / 0.8897)

Figure 5. Comparison of the generalization ability on the SR task. Both methods are trained on ×4 scale factor dataset and tested on
different scale factor (×2). The baseline tend to produce the distortion due to the over-sharpening while proposed method does not. Similar
to the denoising task, the baseline over-smooths inputs so that it fails to recover fine details.

8

EDSR w/o CutBlur (Δ)

HR LR (input)

EDSR w/ CutBlur (Δ)

EDSR w/o CutBlur (Δ)

HR LR (input)

EDSR w/ CutBlur (Δ)

Figure 6. Qualitative comparison of the baseline and CutBlur model outputs. The inputs are the real-world out-of-focus photography (×2
bicubic downsampled) taken from a web. The baseline model over-sharpens the focused region (foreground) resulting in unpleasant artifact
while our method effectively super-resolves the image without generating such distortions.

9

References
[1] Yochai Blau and Tomer Michaeli. The perception-distortion

tradeoff. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6228–6237,
2018. 3

[2] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 1, 2

[3] Ruicheng Feng, Jinjin Gu, Yu Qiao, and Chao Dong. Sup-
pressing model overfitting for image super-resolution net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 0–0, 2019.
2

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 3

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[6] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 1, 3

[7] HR Sheikh. Live image quality assessment database release
2. http://live. ece. utexas. edu/research/quality, 2005. 5

[8] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, Aaron Courville, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better repre-
sentations by interpolating hidden states. arXiv preprint
arXiv:1806.05236, 2018. 1, 2

[9] Thang Vu, Cao Van Nguyen, Trung X Pham, Tung M Luu,
and Chang D Yoo. Fast and efficient image quality enhance-
ment via desubpixel convolutional neural networks. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 0–0, 2018. 1

[10] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0–0, 2018. 3

[11] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0–0, 2018. 3

[12] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-
celli, et al. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 1

[13] Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and
Koichi Kise. Shakedrop regularization for deep residual
learning. arXiv preprint arXiv:1802.02375, 2018. 1, 2

[14] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. arXiv preprint arXiv:1905.04899, 2019. 2

[15] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 2

[16] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 586–595, 2018. 1, 4, 5

[17] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
286–301, 2018. 1

[18] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image restoration. arXiv
preprint arXiv:1812.10477, 2018. 3

10

