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1. Architecture
As presented in the main paper, our Fast-MVSNet has

three parts: sparse high-resolution depth map prediction,
depth map propagation, and Gauss-Newton refinement. For
the sparse high-resolution depth map prediction, our net-
work is similar to MVSNet [4] except that we build a sparse
cost volume in spatial domain and use fewer virtual depth
planes (e.g., 96). Therefore, we can obtain a sparse high-
resolution depth map at much lower cost. For the depth
map propagation module, we use a 10-layer convolutional
network to prediction the weights W . We show the details
of this network in Table 1. For the Gauss-Newton refine-
ment, we use a similar network architecture as propagation
module to extract deep feature representations of the input
images {Ii}Ni=0. In particular, Conv 4 and Conv 7 as in Ta-
ble 1 are first interpolated to the same size and then are con-
catenated as the deep feature representation.

Name Layer Output Size

Input H×W×3

Conv 0 ConvBR,K=3x3,S=1,F=8 H×W×8
Conv 1 ConvBR,K=3x3,S=1,F=8 H×W× 8
Conv 2 ConvBR,K=5x5,S=2,F=16 1⁄2H×1⁄2W×16
Conv 3 ConvBR,K=3x3,S=1,F=16 1⁄2H×1⁄2W×16
Conv 4 ConvBR,K=3x3,S=1,F=16 1⁄2H×1⁄2W×16
Conv 5 ConvBR,K=5x5,S=2,F=32 1⁄4H×1⁄4W×32
Conv 6 ConvBR,K=3x3,S=1,F=32 1⁄4H×1⁄4W×32
Conv 7 Conv,K=3x3,S=1,F=32 1⁄4H×1⁄4W×32
Conv 8 Conv,K=3x3,S=1,F=16 1⁄4H×1⁄4W×16

W Conv,K=3x3,S=1,F=k2 1⁄4H×1⁄4W× k2

Table 1: Weights prediction network in the propagation
module. We denote the 2D convolution as Conv and use
BR to abbreviate the batch normalization and the Relu. K is
the kernel size, S the kernel stride and F the output channel
number. H, W denote image height and width, respectively.

2. Depth maps fusion
The fusion has three steps: photometric filtering, ge-

ometric consistency, and depth fusion. For photometric
filtering, we first interpolate the predicted probability of
the sparse high-resolution depth map to a high-resolution
probability map and filter out points whose probability is
below a threshold. The filtering threshold is set to 0.5.
For geometric consistency, we compute the discrepancy of
each depth map and filter out points whose discrepancy is
larger than a threshold η. Specifically, a point p in ref-
erence dpeth map D is first projected to p′ in the neigh-
boring depth map D̂, then the discrepancy is defined as
f · baseline · ‖ 1

D(p) −
1

D̂(p′)
‖, where f is the focal length of

reference image and baseline is the baseline of two images.
The threshold η is set to 0.12 pixels. For depth fusion, we
require each point to be visible in V = 3 views and take the
average value of all reprojected depths.

In the main paper, for a fair comparison, we use the
same parameters for depth map fusion as that in Point-
MVSNet [2]. However, we find that the fusion parame-
ters η and V have a significant impact on reconstruction
results. We show the quantitative comparison of reconstruc-
tions with different η and V in Table 2. The comparison
of visualization results are shown in Figure 1. From the
comparison results, we can see the trade off between Ac-
curacy and Completeness. Increasing η, the reconstructed
points gets less accurate but more complete. Increasing V ,
the reconstructions become more accurate while become in-
complete. As the fusion has significant impact on the final
reconstruction results, integrating a learnable fusion mod-
ule [3] into the overall pipeline will be an interesting direc-
tion in future work.

3. Gauss-Newton refinement with more itera-
tions

In this section, we conduct ablation study for Gauss-
Newton refinement with more iterations. As shown in
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Figure 1: Reconstruction results of scan10 on the DTU dataset [1] with different fusion parameters. η is the threshold of
geometric consistency check. V is the number of views that a point should be visible. As η increases, the reconstruction
becomes denser while has more noise. As V increases, the reconstruction becomes cleaner while also becomes sparser.

η V Acc. (mm) Comp. (mm) Overall (mm)

0.12 2 0.3969 0.3140 0.3555
0.12 3 0.3360 0.4030 0.3695
0.12 4 0.3007 0.5212 0.4109

0.25 2 0.4663 0.2843 0.3753
0.25 3 0.3951 0.3341 0.3646
0.25 4 0.3542 0.3959 0.3750

0.5 2 0.5480 0.2773 0.4127
0.5 3 0.4614 0.3076 0.3845
0.5 4 0.4128 0.3447 0.3788

1.0 2 0.6655 0.2888 0.4772
1.0 3 0.5555 0.3091 0.4323
1.0 4 0.4923 0.3330 0.4126

2.0 2 0.8381 0.3187 0.5784
2.0 3 0.7002 0.3323 0.5163
2.0 4 0.6152 0.3500 0.4826

Table 2: Quantitative results of reconstruction quality on the
DTU evaluation dataset [1]. Increasing the geometric con-
sistency threshold η, the reconstruted points become less
accurate but also become more complete. Increasing the
number of visible views V , the reconstruction becomes ac-
curate while also becomes incomplete.

Table 3, Gauss-Newton refinement can significantly im-
proves the reconstruction quality. However, the perfor-
mance improvements of applying Gauss-Newton refine-
ment with more interations are marginal. Therefore, we
only use one iteration in Gauss-Newton refinement.

# iterations Acc. (mm) Comp. (mm) Overall (mm)

0 0.3679 0.4475 0.4077
1 0.3360 0.4030 0.3695
2 0.3391 0.3956 0.3673
3 0.3420 0.3902 0.3662
4 0.3435 0.3885 0.3660
5 0.3443 0.3875 0.3659

Table 3: Quantitative results of reconstruction quality on the
DTU evaluation dataset [1] with different iteration number
in Gauss-Newton refinement.

4. Reconstruction results

We show more reconstruction results on the DTU
dataset [1] in Figure 2. Our reconstruction is dense and ac-
curate for all scenes.
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Figure 2: Reconstruction results on the DTU dataset [1].
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