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This supplementary material provides additional details
of HUMBI.

A. Multi-camera System
We design a unique multi-camera system that was de-

ployed in public events including Minnesota State Fair and
James Ford Bell Museum of Natural History at the Univer-
sity of Minnesota. There are 772 subjects captured by 107
GoPro HD cameras recording at 60Hz.
Hardware The capture stage is made of a re-configurable
dodecagon frame with 3.5 m diameter and 2.5 m height us-
ing T-slot structural framing (80/20 Inc.). The stage is en-
circled by 107 GoPro HD cameras (38 HERO 5 BLACK
Edition and 69 HERO 3+ Silver Edition), one LED display
for an instructional video, eight LED displays for video syn-
chronization, and additional lightings. Among 107 cam-
eras, 69 cameras are uniformly placed along the two levels
of the dodecagon arc (0.8 m and 1.6 m) for body and cloth,
and 38 cameras are place over the frontal hemisphere for
face and gaze.
Performance Instructional Video To guide the move-
ments of the participants, we create four instructional
videos (∼2.5 minutes). Each video is composed of four
sessions. (1) Gaze: a subject is asked to find and look at the
requested number tag posted on the camera stage; (2) Face:
the subject is asked to follow 20 distinctive dynamic facial
expressions (e.g., eye rolling, frowning, and jaw opening);
(3) Hand: the subject is asked to follow a series of American
sign languages (e.g., counting one to ten, greeting, and daily
used words); (4) Body and garment: the subject is asked to
follow range of motion, which allows them to move their
full body and to follow slow and full speed dance perfor-
mances curated by a professional choreographer.
Synchronization and Calibration We manually synchro-
nize 107 cameras using LED displays. The maximum syn-
chronization error is up to 15 ms. We use the COLMAP [9]
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software for camera synchronization, and upgrade the re-
construction to metric scale by using the physical distance
between cameras and the ground plane.

B. HUMBI Reconstruction

Given the synchronized multiview image streams, we re-
construct body expressions in 3D.

B.1. 3D Keypoint Reconstruction

Given a set of synchronized and undistorted multiview
images, we detect 2D keypoints of face, hand, body (in-
cluding feet) [1]. Using these keypoints, we triangulate 3D
keypoints with RANSAC [2] followed by the non-linear
refinement by minimizing reprojection error [3]1. In the
RANSAC process, we apply the length constraint (e.g.,
symmetry between left and right body) and reason about
visibility of keypoints based on confidence of detection,
camera proximity, and viewing angle.

B.2. Gaze

We define the moving coordinate of gaze using facial
keypoints. Figure 1 illustrates the moving coordinate. The
black arrow is gaze direction. The red, green and blue seg-
ments are x, y and z-axis of gaze frame. The brown segment
is the center axis of the head cylinder. On the right, the or-
ange arrow is the gaze direction. Dark blue box indicates
eye region. Blue box wraps face. Yellow area is projection
of the cylinder.

B.3. Face

We model Mface = fface(Kface, Iface). We represent
a face mesh using Surrey face model [4], which is a 3D

1When multiple persons are detected, we use a geometric verification
to identify each subject.
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Figure 1: Gaze signals computed by our system (Sec. B.2). (Left)
3D demonstration of captured gaze placed on the black dotted
body joints. Black arrow is gaze direction. Red, green and blue
segment are x, y and z-axis of gaze frame. Brown segment is the
center axis of the head cylinder. (Right) Gaze overlaid on a color
image. Orange arrow is gaze direction. Dark blue box indicates
eye region. Blue box wraps face. Yellow area is projection of the
cylinder.

Figure 2: Face reconstruction (Section B.3). (Top) Recovered 3D
faces with various expressions (Bottom left) Alignment between
projected mesh and subject’s face. (Bottom right) Estimated illu-
mination condition.

morphable model (3DMM) defined as:

Vface(αs,αe) = S0 +

Ks∑
i=1

αsiSi +

Ke∑
i=1

αeiEi, (1)

where Vface ∈ R3Ds is the 3D face vertices, S0 is the mean-
face, Si and αsi are the ith shape basis and its coefficient,
and Ei and αei are the ith expression basis and its coeffi-
cient. Ds is the number of points in the shape model.

The model is fitted to multiview images Iface by mini-
mizing the following cost:

Eface = Ekface + λafaceE
a
face, (2)

whereEkface andEaface are errors of 3D keypoint and appear-
ance, respectively.

We minimize the geometric error between 3D face model
and the reconstructed keypoints:

Ekface
(
Q,αs,αe) =

68∑
i

‖Kiface −Q(V
i

face)‖2

where αs ∈ R63 and αe ∈ R6 are shape and expression co-
efficients, Kiface is ith face keypoint, and V

i

face is the corre-
sponding ith vertex in Vface. Q is a 6D rigid transformation
between the 3DMM in its cannonical coordinate system and
the reconstructed model in the world coordinate system.

For appearance fitting, we use text model from Basel
Face Model [6]:

T = T0 +

Kt∑
i=1

αtiTi, (3)

where T ∈ R3×Ds is the 3D face texture, T0 is the mean
texture model, Ti and αti are the ith texture basis and its
coefficient.

The appearance model is combination of texture and illu-
mination: C = I(Vface,T,αh) where C is the RGB color
for a 3D face and I uses Lambertian illumination to estimate
the appearance. We model the illumination using the spher-
ical harmonics basis model where αh is the coefficient for
the harmonics. From this, the error of appearance is:

Eaface(α
s,αe,αt,αh) =

∑
j

‖cj − φj(C)‖2, (4)

where φj(C) is the projection of the appearance C onto the
jth camera, and cj is the face appearance in the jth image.

We optimize Equation (2) using a nonlinear least squares
solver with ambient light initialization. Figure 2 illustrate
the resulting face reconstruction where we compute the
shape, expression, texture and reflectance. To learn the con-
sistent shape of the face model for each subject, we infer the
maximum likelihood estimate of the shape parameter given
the reconstructed keypoints over frames, which allows us to
fit to the best model (Figure 2).

B.4. Hand

We model Mhand(θh,βh) = fhand(Kface). We rep-
resent a hand mesh using the MANO parametric hand
model [8], which is composed of 48 pose parameters and
20 shape parameters where θ and β are the pose and shape
parameters, respectively.

We minimize the following objective to model fhand:

Ehand

(
θ,β) = Ekhand + λθhE

θ
hand + λβhE

β
hand, (5)

where λθ and λβ are weights for pose and shape regulariza-
tion, respectively.



Figure 3: HUMBI body and cloth reconstruction results.

Given the correspondence between the reconstructed
keypoints and the hand mesh, we minimize their error:

Ekhand(θ,β) =
∑
i

‖Kihand −Q(Vihand)‖2, (6)

where Q is the rigid transformation between the keypoints
and the hand mesh model in its canonical coordinate sys-
tem.

We apply regularization on shape and pose parameters:

Eθhand(θ,β) = ‖θ‖2, E
β
hand = ‖β‖2. (7)

Rigid transformation parameters are firstly estimated by
aligning 6 keypoints on palm, then shape and expression
parameters are estimated alternatively until converge, fol-
lowed by nonlinear optimization for all parameters. For the
same subject, initially hand mesh of each frame is recon-
structed independently. Then shape parameters are fixed as
the median values of all frames. Other parameters are opti-
mized, subsequently.

B.5. Body

We model Mbody = fbody(Kbody,Obody). We rep-
resent the body expression using a parametric SMPL
model [5] and fit to the 3D body keypoints Kbody and the
occupancy map Obody by minimizing the following objec-
tive:

Ebody(αb,βb,θb) = Epbody + λsbE
s
body + λrbE

r
body, (8)

where λsb and λrb control the importance of each measure-
ment. βb ∈ R10 represents the linear shape coefficient,
and αb ∈ R72 represents Euler angles for the 24 joints
(one root joint and 23 relative joints between body parts).
θbody ∈ R4 denotes the translation and scale of the mean
body.

We prescribe the correspondence between the pose of
SMPL model with 3D body keypoints, i.e., Vibody is the
ith keypoint of the SMPL. Epbody penalizes the distance be-
tween the reconstructed 3D body keypoints Kbody and the

keypoints of the SMPL Vbody:

Epbody(αb, θb) =
∑
i

∥∥∥Kibody − Vibody∥∥∥2 . (9)

Esbody encourages the shape of the estimated body model
Mbody to be aligned with the outer surface of the occu-
pancy map Obody. We use Chamfer distance to measure
the alignment:

Esbody(αb, βb, θb) = dchamfer(O,Vbody), (10)

where dchamfer measures Chamfer distance between two
sets of point clouds.
Erbody penalizes the difference between the estimated

shape βb and the subject-aware mean shape βprior
b as fol-

lows:

Erbody(βb;β
prior
b ) =

∥∥∥βb − βprior
b

∥∥∥2 . (11)

This prevents unrealistic shape fitting due to the estimation
noise/error, e.g., long hair covering body. To obtain the
shape prior βpriorb , we solve the Eq. (8) without Ebody

r us-
ing the recovered volumes of the same subject and take the
median βb for robustness.

B.6. Garment

We model a garment fitting function Mcloth =
fcloth(Mbody,Obody) by representing the garment with an
in-house mesh modelMcloth. The assumption of the min-
imally clothed body shape [7] is made. We minimize the
following objective:

Ecloth(Rc, tc) = Ebcloth + λocE
o
cloth + λrcE

r
cloth, (12)

where λoc and λrc control the importance of each measure-
ment.

We manually establish the set of correspondences be-
tween Mbody and Mcloth that move approximately the
same way. Ebcloth measures the correspondence error:

Ebcloth(Vcloth) =
∑
i

‖Vibody − V
i

cloth‖2, (13)
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Figure 4: The training setup for 3D mesh prediction from a single
image.



Input Ground-truth 3DDFA HUMBI 3DDFA+HUMBI

Figure 5: The qualitative results of the monocular 3D face pre-
diction network trained with different dataset combination. The
top and bottom show the testing on the external and HUMBI Face
respectively.

where Vbody and Vcloth are the corresponding vertices.
Eocloth measures the Chamfer distance to align Mcloth

with Obody:

Eocloth(Vcloth) = dchamfer(Obody,Vcloth). (14)

Ercloth is the spatial regularization (Laplacian) that pre-
vents from reconstructing unrealistic cloth structure by pe-
nalizing a non-smooth and non-rigid vertex with respect to
its neighboring vertices [10]:

Ercloth = ∇2Mcloth. (15)

C. Training Mesh Prediction Network
To train the mesh prediction function of each body ex-

pression (i.e., face, hand, and body described in Section
4.1-4.3 of the main paper), we use the recent neural net-
work [11] that can regress a single image to the body model
parameters, e.g., SMPL body shape and pose coefficients,
and camera viewpoint. In Figure 4, the encoder is im-
plemented with [11], and the decoder with the pre-trained
weights of each body model, i.e., 3DMM [6] for face,
SMPL [5] for body, and MANO [8] for hand. The network

Ground-truth MANO MANO+HUMBIInput

Figure 6: Monocular 3D hand mesh prediction results tested on
HUMBI Hand.

Ground-truth Up3d HUMBI Up3d+HUMBIInput

Figure 7: The qualitative results of the monocular 3D body pre-
diction network trained with different dataset combination. The
top and bottom show the results tested on UP-3D and HUMBI
Body respectively.

is trained by minimizing the reprojection error where only
the regression network is newly trained. The training details
are described in Figure 4.



D. More Results

D.1. Mesh Prediction Results

We use a recent CNN model to evaluate HUMBI as in-
troduced in Section C. The qualitative evaluation on single
view prediction is shown in Figure 5 (face), Figure 6 (hand),
and Figure 7 (body).

D.2. Garment Reconstruction Accuracy

We provide additional evaluation of view-dependent gar-
ment silhouette accuracy measured by the Chamfer distance
between the annotated and the reprojected garment bound-
ary in 2D. We pick a half-sleeve shirts and half pants models
as a representative garment of top and bottom and measure
the accuracy from each camera view that has different an-
gle with respect to the most frontal camera. On average in
Figure 8, the silhouette error seen from the side view (11
pixels) is higher than the frontal (7.5 pixels) and rear views
(8 pixels).
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Figure 8: Garment silhouette error.
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