
Searching Central Difference Convolutional Networks for Face Anti-Spoofing
(Appendix)

1. Appendix A: Derivation and Code of CDC

Here we show the detailed derivation (Eq.(4) in draft) of
CDC in Eq. (1) and Pytorch code of CDC in Fig. 1.

y(p0) = θ ·
∑

pn∈R
w(pn) · (x(p0 + pn) − x(p0))︸ ︷︷ ︸

central difference convolution

+ (1 − θ) ·
∑

pn∈R
w(pn) · x(p0 + pn)︸ ︷︷ ︸

vanilla convolution

= θ ·
∑

pn∈R
w(pn) · x(p0 + pn)︸ ︷︷ ︸

vanilla convolution

+θ · (−
∑

pn∈R
w(pn) · x(p0))︸ ︷︷ ︸

central difference term

+ (1 − θ) ·
∑

pn∈R
w(pn) · x(p0 + pn)︸ ︷︷ ︸

vanilla convolution

= (θ + 1 − θ) ·
∑

pn∈R
w(pn) · x(p0 + pn)︸ ︷︷ ︸

vanilla convolution

+θ · (−x(p0) ·
∑

pn∈R
w(pn))︸ ︷︷ ︸

central difference term

=
∑

pn∈R
w(pn) · x(p0 + pn)︸ ︷︷ ︸

vanilla convolution

+θ · (−x(p0) ·
∑

pn∈R
w(pn))︸ ︷︷ ︸

central difference term

.

(1)

import torch .nn as nn
import torch .nn. functional as F
class CDC (nn.Module):

def init (self , IC, OC, K=3, P=1, theta =0.7) :
IC, OC: in channels , out channels
K, P: kernel size , padding
theta : hyperparameter in CDC
super(CDC, self) . init ()
self . vani = nn.Conv2d(IC, OC, kernel size =K, padding=P)
self . theta = theta

def forward(self , x) :
x: input features with shape [N,C,H,W]
out vanilla = self . vani (x)

kernel diff = self .conv.weight.sum(2).sum(2)
kernel diff = kernel diff [:, :, None, None]

out CD = F.conv2d(input=x, weight= kernel diff , padding=0)

return out vanilla − self . theta ∗ out CD

Figure 1. Python code of CDC based on Pytorch.

(a) (b)

(Adaptive) (=0.7)

Figure 2. Adaptive CDC with learnable θ for each layer. (a)
The learned θ weights for the first ten layers. (b) Performance
comparison on Protocol-1 OULU-NPU.

2. Appendix B: Adaptive θ for CDC
Although the best hyperparameter θ = 0.7 can be manu-

ally measured for face anti-spoofing task, it is still trouble-
some to find the best-suited θ when applying Central Differ-
ence Convolution (CDC) to other datasets/tasks. Here we
treat θ as the data-driven learnable weights for each layer.
A simple implementation is to utilize Sigmoid(θ) to guar-
antee the output range within [0, 1].

As illustrated in Fig. 2(a), it is interesting to find that the
values of learned weights in low (2nd to 4th layer) and high
(8th to 10th layer) levels are relatively small while that in
mid (5th to 7th layer) level are large. It indicates that the
central difference gradient information might be more im-
portant for mid level features. In terms of the performance
comparison, it can be seen from Fig. 2(b) that adaptive CDC
achieves comparable results (1.8% vs. 1.0% ACER) with
CDC using constant θ = 0.7.

3. Appendix C: Cross-type Testing on SiW-M

Following the same cross-type testing protocol (13 at-
tacks leave-one-out) on SiW-M dataset [3], we compare
our proposed methods with three recent face anti-spoofing
methods [1, 2, 3] to valid the generalization capacity of un-
seen attacks. As shown in Table 1, our CDCN++ achieves
an overall better ACER and EER, with the improvement
of previous state-of-the-art [3] by 24% and 26% respec-

Table 1. The evaluation and comparison of the cross-type testing on SiW-M [3].
Method Metrics(%) Replay Print Mask Attacks Makeup Attacks Partial Attacks AverageHalf Silicone Trans. Paper Manne. Obfusc. Imperson. Cosmetic Funny Eye Paper Glasses Partial Paper

SVMRBF+LBP [1]

APCER 19.1 15.4 40.8 20.3 70.3 0.0 4.6 96.9 35.3 11.3 53.3 58.5 0.6 32.8±29.8
BPCER 22.1 21.5 21.9 21.4 20.7 23.1 22.9 21.7 12.5 22.2 18.4 20.0 22.9 21.0±2.9
ACER 20.6 18.4 31.3 21.4 45.5 11.6 13.8 59.3 23.9 16.7 35.9 39.2 11.7 26.9±14.5
EER 20.8 18.6 36.3 21.4 37.2 7.5 14.1 51.2 19.8 16.1 34.4 33.0 7.9 24.5±12.9

Auxiliary [2]

APCER 23.7 7.3 27.7 18.2 97.8 8.3 16.2 100.0 18.0 16.3 91.8 72.2 0.4 38.3±37.4
BPCER 10.1 6.5 10.9 11.6 6.2 7.8 9.3 11.6 9.3 7.1 6.2 8.8 10.3 8.9± 2.0
ACER 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6±18.5
EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0±17.7

DTN [3]

APCER 1.0 0.0 0.7 24.5 58.6 0.5 3.8 73.2 13.2 12.4 17.0 17.0 0.2 17.1±23.3
BPCER 18.6 11.9 29.3 12.8 13.4 8.5 23.0 11.5 9.6 16.0 21.5 22.6 16.8 16.6 ±6.2
ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8 ±11.1
EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1± 12.2

CDCN (Ours)

APCER 8.2 6.9 8.3 7.4 20.5 5.9 5.0 43.5 1.6 14.0 24.5 18.3 1.2 12.7±11.7
BPCER 9.3 8.5 13.9 10.9 21.0 3.1 7.0 45.0 2.3 16.2 26.4 20.9 5.4 14.6 ±11.7
ACER 8.7 7.7 11.1 9.1 20.7 4.5 5.9 44.2 2.0 15.1 25.4 19.6 3.3 13.6 ±11.7
EER 8.2 7.8 8.3 7.4 20.5 5.9 5.0 47.8 1.6 14.0 24.5 18.3 1.1 13.1± 12.6

CDCN++ (Ours)

APCER 9.2 6.0 4.2 7.4 18.2 0.0 5.0 39.1 0.0 14.0 23.3 14.3 0.0 10.8±11.2
BPCER 12.4 8.5 14.0 13.2 19.4 7.0 6.2 45.0 1.6 14.0 24.8 20.9 3.9 14.6±11.4
ACER 10.8 7.3 9.1 10.3 18.8 3.5 5.6 42.1 0.8 14.0 24.0 17.6 1.9 12.7±11.2
EER 9.2 5.6 4.2 11.1 19.3 5.9 5.0 43.5 0.0 14.0 23.3 14.3 0.0 11.9±11.8

Figure 3. Features visualization on living face (the first column) and spoofing faces (four columns to the right). The four rows represent
the RGB images, low-level features w/o CDC, w/ CDC and low-level spatial attention maps respectively. Best view when zoom in.

tively. Specifically, we detect almost all “Impersonation”
and “Partial Paper” attacks (EER=0%) while the previous
methods perform poorly on “Impersonation” attack. It is
obvious that we reduce the both the EER and ACER of
Mask attacks (“HalfMask”, “SiliconeMask”, “Transparent-
Mask” and “MannequinHead”) sharply, which shows our
CDC based methods generalize well on 3D nonplanar at-
tacks.

4. Appendix D: Feature Visualization
The low-level features and corresponding spatial atten-

tion maps of MAFM are visualized in Fig. 3. It is clear
that both the features and attention maps between living
and spoofing faces are quite different. 1) For the low-level
features (see 2nd and 3rd row in Fig. 3), neural activation
from the spoofing faces seems to be more homogeneous be-
tween the facial and background regions than that from liv-
ing faces. It’s worth noting that features with CDC are more
likely to capture the detailed spoofing patterns (e.g., lattice
artifacts in “Print1” and reflection artifacts in “Replay2”).
2) For the spatial attention maps of MAFM (see 4th row in
Fig. 3), all the regions of hair, face and background have
the relatively strong activation for the living faces while the
facial regions contribute weakly for the spoofing faces.

References
[1] Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi

Feng, and Abdenour Hadid. Oulu-npu: A mobile face pre-
sentation attack database with real-world variations. In FGR,
pages 612–618, 2017. 1, 2

[2] Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning
deep models for face anti-spoofing: Binary or auxiliary super-
vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 389–398, 2018. 1, 2

[3] Yaojie Liu, Joel Stehouwer, Amin Jourabloo, and Xiaoming
Liu. Deep tree learning for zero-shot face anti-spoofing. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4680–4689, 2019. 1, 2

