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1. Proof on Hash Center Validity from H2K

When K < m 6 2K in Algorithm 1, we use the combi-
nation of two Hadamard matrices H2K = [HK ,−HK ]> to
construct the hash centers. Here, we prove that the rows of
H2K can also be valid hash centers in the K-dimensional
Hamming space. According to Definition 1, we know if the
Hamming distance between any two row vectors of H2K is
equal to or lager thanK/2, the row vectors ofH2K are valid
hash centers.

We consider following three cases for Hamming distance
between any two row vectors hi and hj in H2K :

1. Both of the two row vectors hi and hj belong to the
upper half or below half of H2K = [HK ,−HK ]>,
i.e., hi, hj ∈ HK or hi, hj ∈ −HK . So hi and hj
are still orthgonal with each other with an inner prod-
uct of 〈hi, hj〉 = 0. We get the Hamming distance
DH(hi, hj) = 1

2 (K − 〈hi, hj〉) = K
2 ;

2. One of the two row vectors belongs to HK , and the
other one belongs to −Hk. We assume hi ∈ HK and
hj ∈ −HK . If hi 6= −hj , the two row vectors are still
orthgonal with each other, thus DH(hi, hj) = K

2 .

3. One of the two row vectors belongs to HK , and the
other one belongs to −Hk, but hi = −hj . Thus the
inner product is 〈hi, hj〉 = −K, and DH(hi, hj) =
K.

We summarize these three situations as following:

DH(hi, hj)


= K

2 if hi, hj ∈ HK or −HK

= K
2 if hi ∈ HK , hj ∈ −HK , hi 6= −hj

= K if hi ∈ HK , hj ∈ −HK , hi = −hj
(S.1)

So the average Hamming distance is larger than K/2,
and the row vectors in H2K are valid hash centers in K-
dimensional Hamming space.

For multi-label data, the K/2 distance lower bound still
holds if they do not share any semantic label, which can be
proven by doing a sampling simulation on the Hadamard
matrix. Assuming that we randomly sample six hash cen-
ters a1, a2, a3 and b1, b2, b3, the centroid of a1, a2, a3 is ca,

and cb is the centroid of b1, b2, b3. The ca includes two
parts: the first part ca1 comes from the common/major bits
of a1, a2, a3, while the second part ca2 is sampled from
Bernoulli distribution, as well as cb. If we directly let
length(ca1)=length(cb1), length(ca2)=length(cb2), then we
can get E[DH(ca1, cb1) +DH(ca2, cb2)] = K/2.

The Hadamard method is superior to the Bernoulli
method because the mutual distance between hash centers
can be maximized when sampling from Hadamard matrix
(the proof is in supplementary materials), while Bernoulli
distribution cannot guarantee to generate hash centers with
maximized mutual distance. So, we adopt the Hadamard
method when m <= 2K&K = 2n and the Bernoulli
method when m > 2K.

2. Jointly Learning with Pairwise Similarity
Given the semantic hash centers C ′ = {c′1, c′2, . . . , c′N}

and pairwise similarity label S = {sij}, we can formulate
central similarity and pairwise similarity based learning to-
gether to optimize the deep hashing functions. Recall the
similarity label sij = 1 indicates the data pairs xi and xj
are similar. The Maximum Likelihood (ML) estimation of
hash codes H = [h1, ..., hN ] for all training data X with
label S can be obtained by maximizing the following like-
lihood probability:

P (C ′,S|H) = P (S|H)P (C ′|S,H). (S.2)

Since we build the hash centers based on S, the P (C ′|S) is
known and can be treated as constant. Equation (S.2) thus
becomes P (C ′,S|H) ∝ P (S|H)P (C ′|H). Then the log
likelihood can be written as

logP (C ′,S|H) ∝ logP (C ′|H) + logP (S|H)

=
∑
c′i∈C ′

logP (c′i|hi) +
∑
sij∈S

logP (sij |hi, hj), (S.3)

where the first RHS term represent the central similarity and
the second RHS term is the pairwise similarity. The cen-
tral similarity loss LC has been given in Sec. 3.3. For the
pairwise similarity term in Equation (S.3), we use the inner
product of the hash codes to measure the probability of the
similarity labels.



Recall the Hamming distance and inner product for
any two hash codes hi and hj satisfies: DH (hi, hj) =
1
2 (K − 〈2hi − 1, 2hj − 1〉), where 1 is the all-one vector.
We use inner product to replace the Hamming distance and
define P (si,j |hi, hj), the conditional probability of si,j , as
follows:

P (sij |hi, hj) =

{
σ(〈2hi − 1, 2hj − 1〉), sij = 1,

1− σ(〈2hi − 1, 2hj − 1〉), sij = 0,

(S.4)
or equivalently,

P (sij |hi, hj)
= σ(〈2hi−1, 2hj−1〉)sij (1−σ(〈2hi−1, 2hj−1〉))1−sij ,

(S.5)
where σ(x)= 1

1+e−x is the Sigmoid function. This logis-
tic regression-alike formulation satisfies that the smaller the
Hamming distance DH(hi, hj), the larger the inner product
〈2hi − 1, 2hj − 1)〉 and the larger the conditional probabil-
ity P (1|hi, hj). This means that the pairs hi and hj have
a large probability to be classified as similar. Otherwise,
the pairs would be classified to be dissimilar (P (0|hi, hj) is
large). After algebraic calculations, maximizing the above
likelihood can be equivalently written as minimizing the
following the pairwise similarity loss LP is computed as:

LP =
∑
sij∈S

(log(1 + exp(〈2hi − 1, 2hj − 1〉))

− sij 〈2hi − 1, 2hj − 1〉).
(S.6)

Putting all the pieces together, we obtain the following
jointly optimization

min
Θ

LT = LC + λ1LQ + λ2LP . (S.7)

where LQ is the quantization loss, which has been given in
the main text. Because the original method will only gener-
ate continuous centers, the quantization loss is used to make
the learned centers be binarized for the purpose of hashing.
In the experiment section of the main text, we also present
and discuss performance of jointly learning by combining
both LC and LP in the first ablation study. The λ1 and λ2

are weights for the three losses, which are obtained by grid
search.

3. Implementation Details
3.1. Framework of Central Similarity Quantization

The framework of Central Similarity Quantization is
shown in Fig. S.1. The input of CSQ is {(xi, xj , ci, cj)}.
Here ci and cj are the hash centers for xi and xj respec-
tively. CSQ takes this input and outputs compact hash codes
through the following deep hashing pipeline: 1) a 2D or 3D

CNN sub-network to extract the data representation for im-
age or video data, 2) a hash layer with three fully-connected
layers and activation functions to project high dimensional
data features to hash codes in the Hamming space, 3) a
central similarity loss LC for central similarity-preserving
learning, where all hash centers are defined in the Ham-
ming space, making hash codes converge on corresponding
centers. and 4) a quantization loss LQ for improving bi-
narization. For image hashing, we adopt 2D CNN to learn
image features. For video hashing, we adopt 3D CNN to
learn video features.

3.2. Implementation details for image retrieval

We implement CSQ by adopting AlexNet [4] and
ResNet [2] architecture as 2D CNN for image feature learn-
ing. For fair comparison, the four baseline deep methods
also use the same network with the same configurations. We
fine-tune the four convolution layers conv1 to conv4 with
learning rate 1e-5, which inherits from AlexNet or ResNet
model pre-trained on the ImageNet. We never touch the test
data in pre-training. We train the hash layer from scratch
with 20 times learning rate than the convolution layers. We
use the Adam solver [3] with a batch size of 64 and the
hyper-parameters λ1 = 0.05 and λ2 = 0.2 are obtained by
grid searching.

3.3. Implementation details for video retrieval

We employ MFN [1] as 3D CNN for video feature learn-
ing. The CSQ is first pre-trained on action classification
task to learn video features, and we copy the parameters of
3D convolution layers. Then we fine tune the convlutional
layers with learning rate 5e-4, and train the hash layer with
5 times learning rate than the 3D convolution layers. We use
mini-batch stochastic gradient decent (SGD) with 0.9 mo-
mentum. The batch size is 32 and weight decay parameters
is 1e-4. We train on two TITAN X GPU (12G) and takes
around 16 hours for UCF101 and 9 hours for HMDB51.

4. Hash Center Learning
We give the loss functions to learn hash cener by three

different methods:

Face Center We adopt the method to learn centers as
the common face recognition [6]. The learned centers are
{c1, c2, ..., cp}, where p is number of category. Then the
center ci can be updated in each mini-batch according to
the following function:

∆ci =

∑m
j=1 δ(lj = i)(ci − xj))
1 +

∑m
j=1 δ(lj = i)

, (S.8)

where lj is the semantic label of data xj . So the center loss
of “Face Center” is: LFC = ∆ci. We learn the hash center



Figure S.1. Framework of proposed Central Similarity Quantization (CSQ). CSQ takes as input similar and dissimilar pairs (images or
videos). For image or video data, we use different types of CNNs for feature learning. After passing through a hash layer, similar pairs
converge to a common center and dissimilar pairs converge to different centers by adding central similarity constraint. The convergent
targets are the hash centers (Center1 and Center2) in the Hamming space.

and hash codes by following function:

min
Θ

LT = LC + λ1LQ + λ2LFC , (S.9)

where LQ is quantization loss, and LC is central similarity
loss, as defined in our paper. Hyper-parameters λ1 = 0.02
and λ2 = 1.5 are obtained by grid search.

Magnet Center Magnet center are learned by K-
means [5]. The centers {c1, c2, ..., cp} are updated in each
mini-batch according to the K-means algorithm as:

ci = arg min
ci

K∑
k=1

‖ci − µc
k‖

2
, (S.10)

where K is the number of similar data points in each mini-
batch and uk is the representation of data xk.

So once obtain centers in each mini-batch, the total loss
function in Magnet Center hashing is:

min
Θ

LT = LC + λ1LQ, (S.11)

Hyper-parameters λ1 = 0.005 is obtained by grid search.

RepMet Center The loss function to learn centers
{c1, c2, ..., cp} is

LRC = |minDH(uk, ci)−min
j 6=i

DH(uk, cj)+α|+, (S.12)

where uk is the feature of xk, and the center of xk is ci. |.|+
is the ReLU function. This loss function try to ensure at
least α margin between the Hamming distance of data point
to its center and to other closest centers. We set α = K/2
to keep a large distance between data points.

Similarity with Face Center and Magnet Center, the total
loss function in RepMet Center hashing is:

min
Θ

LT = LC + λ1LQ + λ2LRC , (S.13)

Hyper-parameters λ1 = 0.001 and λ2 = 0.9 are obtained
by grid search.

Robustness experiment of hash centers When applying
our method as Algorithm 1 to generate hash centers, we can
sample different rows of the Hadamard matrix to generate
hash centers. To show CSQ performs consistently well for
different hash center choices, we evaluate its performance
for five different combinations of hash centers. From the
results in Table 1, we can validate the robustness of CSQ to
hash center choices.

Table 1. Run five times for different hash center choices. The re-
sults are mean ± std for mAP@64bits.

Dataset ImageNet MS COCO HMDB51 UCF101

mAP 0.868±0.13 0.860±0.27 0.579±0.35 0.873±0.13

5. Visualization of Hash Centers
We visualize some generated hash centers from algo-

rithm 1 in this section. The 64 × 64 Hadamard matrix
H64 is shown as Fig. S.2. The hash centers of 64-bit
for the five datasets we used are constructed by H64 and
H2K = [H64,−H64]> as Algorithm 1.

For NUS WIDE, we only sample 21 most frequent cat-
egories for experiments. Because of 16 < 21 < 32, all the
hash centers with bits of 16, 32 and 64 for NUS WIDE is
constructed by Hadamard matrix H16, H32 and H64. For
the other four datasets, the 64-bit hash centers are con-
structed byH64 andH2K , but 16-bit and 32-bit hash centers
are constructed by sampling from Bernoulli distributions.
We give the illustration of the hash centers of 16-bit, 32-bit
and 64-bit for ImageNet in Fig. S.4 and Fig. S.5. The hash
centers for other three datasets are similar. In Fig. S.4 and
Fig. S.5, every row means one hash center for one category
in ImageNet.



Figure S.2. Hadamard matrix H64: 64× 64.

Figure S.3. Hadamard matrix H2K = [H64,−H64]
T : 128× 64.

Figure S.4. Hash centers of ImageNet@64bit: 100×64. Each row
represents one hash center, and there are totally 100 hash centers.
The number of column represents the dimension of the hash center.

(a) 32bit (b) 16bit

Figure S.5. Hash centers of ImageNet@32bit and @16bit. The
size of (a) is 100 × 32; the size of (b) is 100 × 16. Each row
represents one hash center, and the number of column represents
the dimension of the hash center.
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