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This supplementary material provides details which were
not presented in the main paper due to space limitations. In
the following, we first present the details for our construct-
ed dataset, including indoor and outdoor datasets. Then,
we give the noise synthesis details. Hereafter, we give the
comparison results with SMD [2], including the retrained
SMD results for our dataset. Finally, we give the user s-
tudy results on our outdoor dataset. We also give a video
demo for the outdoor video denoising results. The reader-
s are encouraged to watch the video for better observation
and comparison.

1. Raw Video Dataset
1.1. Captured Raw Video Dataset

As stated in the main paper, we totally captured 11 in-
door scenes under 5 different ISO levels ranging from 1600
to 25600. For each static moment, we continuously cap-
tured M noisy frames. The averaging of the M frames is
the expected noise free frame. We note that there is still s-
light noise after averaging noisy frames, and we further ap-
plied BM3D [4] to the averaged frame to get a totally clean
ground truth. Table 1 lists the detailed information for our
captured dataset.

Fig. 1 presents 11 indoor scenes in our dataset. Each
scene is captured under five different ISO values. The first
six scenes are used for training and the last five scenes are
used for testing.

We also captured 50 videos for ten outdoor scenes to test
the effectiveness of our model trained with indoor scenes.
Each video contains 50 frames. Fig. 2 presents the ten out-
door scenes.

1.2. Noise Calibration for a Given Camera

As demonstrated in the main paper, the noise model for
raw images is

xp ∼ σ2
sP(yp/σ2

s) +N (0, σ2
r) (1)

where xp is the noisy observation, yp is the true intensity at
pixel p. σr and σs are parameters for read and shot noise,

Table 1. Detailed settings for our captured indoor dataset. M is the
number of frames used to generate the clean frame. σ is the pa-
rameter for BM3D denoising. Each video contains 7 consecutive
frames and we capture 11 videos for each ISO setting.

ISO M σ Number of Videos
1600 150 0.125 11
3200 150 0.25 11
6400 250 0.5 11

12800 250 1 11
25600 500 2 11

which vary across images as sensor gain (ISO) changes. We
calibrate the noise parameters for given camera by captur-
ing flat-field frames and bias frames. Since σs and σr are
different for different ISO settings, in the following we give
details for the parameter estimation for one ISO setting. The
estimation process for other ISO settings is similar.

We put a white paper on a uniformly lit wall to capture
flat-field frames. We continuously take two images of the
white paper for a specific exposure time, which is denoted
by

xap = yp + nar(p) + nas(p)yp,

xbp = yp + nbr(p) + nbs(p)yp,
(2)

where xap and xbp are the two captured noisy images at po-
sition p, nr(p) represents the read noise and ns(p)yp is the
shot noise. To avoid the influence of vignetting, we crop a
400×400 patch from the center of the captured image. S-
ince yp is supposed to be the same for the cropped patch and
the noise is random, we utilize the median of the averaging
pixels 0.5(xap + xbp) as the true intensity, i.e. y. The dif-
ference between the two images is the noise signal, which
is

xap − xbp = nar(p)− nbr(p) + (nas(p)− nbs(p))yp. (3)

The variance of xa − xb, denoted by σ2
d, is 2 times of the

original variance of xa. Then we obtain a point (y1, σ2
d1
)



Figure 1. The eleven indoor scenes in our dataset. From top to down, each row lists the raw noisy videos (captured under ISO 25600),
raw clean videos, sRGB noisy videos, and sRGB clean videos, respectively. The color videos are generated from raw video using our
pre-trained ISP module.

Figure 2. The ten outdoor scenes in our dataset. The top row is the raw noisy videos and the bottom row is the corresponding sRGB noisy
videos generated with our pre-trained ISP module.

for current exposure time. Hereafter, we capture the white
paper using another exposure time and repeat the above pro-
cess. Then will get another point (y2, σ2

d2
). We repeat this

process for several times and get several points. Then we
plot these points and the slope (denoted by k) of the line
is the estimated variance 2σ2

s . As shown in Fig. 3, these
points (denoted by blue points) generally form a straight
line except for the points near the clipping threshold. σ2

s

can be derived by k
2 . Fig. 3 presents the lines for the five

ISO settings and the corresponding estimated σ2
s for noise

synthesis.
σr is estimated by capturing bias frames. We cover the

lens with the camera cover and then we capture the bias
frame in a dark room. For each ISO setting, we capture five
bias frames. Since there is no shot noise in bias frames,
the variance of the bias frame is caused by read noise. We
utilize the average of the five estimated variances as the final
σ2
r for a specific ISO.

2. Quantitative Comparison Results

In the main paper, we only present the average denoising
results for all the ISO settings. Here, we further present the
average denoising results for each ISO setting in Table 2.

We give three results for SMD. The first result, denoted
by SMD, is generated with their released model and our raw
video is preprocessed with their settings. In order to com-
pare with our method in the full-resolution result, we did not
utilize the binning process in SMD and utilize widely used
demosaicing process used in [1] to preprocess our dataset

for SMD. The second result, denoted by SMD*, is generat-
ed by retraining SMD with our dataset and the VBM4D pre-
processing used in the original SMD code is removed. The
third result, denoted by SMD-R is generated by retraining
SMD with our dataset and the VBM4D preprocessing is in-
cluded. TOFlow, EDVR, and DIDN are retrained with our
dataset.

It can be observed that our method greatly outperforms
the denoising methods conducted on sRGB domain. Note
that although SMD-R contains VBM4D preprocessing, it
still cannot remove the noise well 1.

3. Qualitative Comparison Results
3.1. Comparison with SMD

Since the SMD dataset is constructed by static scenes,
we directly process the SMD dataset without retraining.
Fig. 4 presents the visual comparison results for two out-
door scenes. SMD prefers the results with large digital gain-
s. However, this tends to over-expose the bright regions in
images. In contrast, we prefer to brighten the images to
a moderate level and remove the noise. When SMD and
our method utilize the same digital gain, our result is more
natural than SMD. There is no over exposing in our result
and the noise is removed clearly. Note that, we can also
deal with larger digital gains if we retrain our model with
noisy-clean pairs where larger digital gains are applied for

1The results of SMD-R may be improved if we tune the parameters for
VBM4D. However it is time consuming and tuning VBM4D cannot bring
more than 1 dB gain.



Figure 3. The estimated σs for five ISO settings.

Table 2. Comparison with state-of-the-art denoising methods. Each row lists the average denoising results in raw (or sRGB) domain for
the scenes captured under the specified ISO and the last row is the average denoising results for all the ISO settings. The results of Ours−

are obtained by training the proposed model with only synthetic noisy videos. The best results are highlighted in bold and the second best
results are underlined.

ISO Noisy ViDeNN [3] VBM4D [5] TOFlow [7] SMD [2] SMD* SMD-R EDVR [6] DIDN [8] Ours− Ours

1600
Raw PSNR 38.57 - - - - - - - 47.00 47.14 47.74

SSIM 0.921 - - - - - - - 0.993 0.993 0.994

sRGB PSNR 37.41 35.44 39.34 37.61 26.59 37.81 36.30 42.10 41.85 42.24 43.13
SSIM 0.922 0.966 0.967 0.964 0.923 0.969 0.968 0.984 0.985 0.985 0.988

3200
Raw PSNR 35.16 - - - - - - - 45.02 45.26 45.91

SSIM 0.854 - - - - - - - 0.989 0.990 0.991

sRGB PSNR 34.90 34.37 36.62 36.97 26.51 37.07 36.36 41.03 40.65 41.13 41.99
SSIM 0.871 0.946 0.951 0.958 0.918 0.964 0.965 0.980 0.980 0.982 0.985

6400
Raw PSNR 31.98 - - - - - - - 43.08 43.30 43.85

SSIM 0.765 - - - - - - - 0.985 0.986 0.988

sRGB PSNR 31.85 31.87 33.75 35.42 26.40 35.93 35.50 38.98 38.82 39.26 39.99
SSIM 0.784 0.880 0.925 0.940 0.908 0.958 0.957 0.974 0.975 0.977 0.980

12800
Raw PSNR 28.07 - - - - - - - 40.58 40.57 41.20

SSIM 0.623 - - - - - - - 0.978 0.979 0.982

sRGB PSNR 29.27 29.79 31.59 33.54 25.54 34.91 35.23 37.47 37.54 37.80 38.44
SSIM 0.688 0.778 0.902 0.910 0.908 0.952 0.9561 0.967 0.970 0.971 0.975

25600
Raw PSNR 26.29 - - - - - - - 40.56 40.58 41.17

SSIM 0.497 - - - - - - - 0.977 0.978 0.982

sRGB PSNR 25.53 25.95 29.48 30.52 26.24 33.64 34.63 35.26 35.28 35.51 36.21
SSIM 0.495 0.559 0.868 0.835 0.904 0.942 0.952 0.957 0.960 0.960 0.968

Average
Raw PSNR 32.01 - - - - - - - 43.25 43.37 43.97

SSIM 0.732 - - - - - - - 0.984 0.985 0.987

sRGB PSNR 31.79 31.48 34.16 34.81 26.26 35.87 35.60 38.97 38.83 39.19 39.95
SSIM 0.752 0.826 0.922 0.921 0.912 0.957 0.960 0.972 0.974 0.975 0.979

the noisy inputs.

3.2. User Study

Since there is no ground truth for outdoor videos, we
conduct a user study to evaluate the denoising performance
for our method, and two competing methods, i.e. EDVR [6]
and DIDN [8]. For each scene, we randomly select a noisy
video from the five ISO settings for the user study. There-
fore, there are ten videos for ten dynamic scenes involved
in the user study. For each scene, the three denoising results
are randomly displayed and the workers are asked to vote
for their preferred denoising results. There are 22 work-
ers participating in the user study. The voting results are
presented in Fig. 5. It can be observed that our method out-
performs EDVR and DIDN for most videos. The results of
DIDN are the worst since it does not consider the temporal
correlations in denoising, which leads to large flicking ar-
tifacts. EDVR outperforms our result on the 8th and 10th

videos since the two videos have large camera shaking and
the workers are distracted by the camera motion and ignore
the flicking artifacts.
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