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This supplementary material provides details not in-
cluded in the main manuscript because of the space con-
strain. In Section 1, we present the training data used by
different methods mentioned in the paper. In Section 3, we
provide details about the weight map used in the compu-
tation of Lmap in the main manuscript. In Section 2, we
show some qualitative results on the SURREAL [18] test
set and present qualitative comparison between our method
and other state-of-the-art mesh-based methods.

1. Training data

As mentioned in the Section 4.2 of the main manuscript,
the mesh-based methods we mentioned utilize different
training data and the results are not directly comparable.
In this section, we provides more details about the train-
ing data of these methods. We first introduce the related
datasets bellow.

LSP-extended: LSP-extended [6] is a 2D human pose
benchmarks containing 10,000 images with challenging hu-
man poses. For every image, 14 visible joint locations are
annotated.

MPII: MPII [1] is a large scale 2D human pose dataset
composed of over 25K images with annotated 2D joint lo-
cations. The MPII dataset contains over 40K people and
covers 410 human activities.

MS COCO: For MS COCO [12], only the part of key-
points detection task is used, which contains over 150,00
people and 1.7 million annotated 2D keypoints.

MPI-INF-3DHP: MPI-INF-3DHP [14] is a recent 3D
human pose estimation dataset captured by using a multi-
view setup and synthetic data augmentation. For each im-
age, ground-truth 3D keypoints locations are provided.

MOCA: MOCA [20] is a recent synthetic dataset includ-
ing 2 million synthetic images with corresponding ground-
truth 3D human body shapes and poses.

In Table 1, we present the training data used by each

method when evaluated on the Human3.6M [4] test set.
Pavlakos et al. [16] uses no training data from Human3.6M
and trains 3D prior net using data from CMU MoCap [3],
while NBF [15] only uses training data from Human3.6M.
HMR [7], SPIN [9] and DenseRac [20] all utilize extra
training data from 2D human pose benchmarks. SPIN and
DenseRac additionally includes training data from the MPI-
INF-3DHP dataset [14]. In addition, DenseRac makes use
of synthetic data from MOCA [20]. Our method follows
the setting of CMR [10], and uses training data from Hu-
man3.6M and UP-3D [11] without extra data from 2D hu-
man pose benchmarks. Our framework outperforms CMR
with a large margin on the Human3.6M test set (the MPJPE
of CMR and our method are 50.1 mm and 39.3 mm respec-
tively).

Although SPIN and our method have similar perfor-
mance on Human3.6 test set, the contributions are totally
different. The impressive performance of SPIN can be at-
tributed to its effective utilization of training data from 2D
human pose benchmarks. However, our method focuses on
the dense correspondence between 3D mesh and image, as
well as the utilization of local image features. Therefore,
SPIN and our method are complementary.

2. Qualitative results

In this section, we present some qualitative results of
our method. Figure 1 shows some qualitative results of our
method on the SURREAL [18] test set. Our method is able
to reconstruct 3D human bodies with various shapes and
poses.

Figure 2 shows some qualitative results of our method
and other state-of-the-art methods on the test set of Hu-
man3.6M [4]. The state-of-the-art model-free method (i.e.
CMR [10]) and model-based method (i.e. SPIN [9]) all esti-
mate the full human body based on the global image feature
extracted by CNN and may fail to reconstruct details which



Datasets Pavlakos etc. [16] NBF[15] HMR [7] SPIN [9] DenseRac [20] CMR [10] Ours
Human3.6M [4] X X X X X X

LSP [5] X X X X
LSP-extended [6] X X X

MPII [1] X X X X
MS COCO [12] X X X

MPI-INF-3DHP [14] X X
MOCA [20] X
UP-3D [11] X X

Table 1. The training data used by different methods when evaluated on the Human3.6M [4] test set. Our approach uses the same training
data with CMR [10].

Figure 1. Qualitative results of our approach on the SURREAL [18] test set.
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Figure 2. Comparison between our method and other state-of-the-art 3D mesh-based methods. CMR [10] and SPIN [9] may fail to
reconstruct details which are not distinct on the image, while our method is able to reconstruct these details well.

are not distinct on the image. However, our method can
utilize local image features with the explicitly established
correspondence between mesh and image, and is able to re-
construct these details better.

3. Weight map

This section introduces the weight map for the loss term
between regressed location map and ground-truth location
map (i.e. Lmap). We assign larger weights to the parts away
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Figure 3. Illustration of the weight map used for Lmap. Surface
parts away from torso are assigned with larger weights.

from the torso, whose locations are with larger variance and
more difficult for the network to estimate.

Specifically, we generate the weight map using the mesh
part segmentation provided by SMPL model [13]. Differ-
ent weights are assigned to different surface parts to get
the weight map. Denote the weights for torso, neck&head,
arms&legs, hands&foots respectively as λt, λn&h, λa&l,
λh&f . We set λt : λn&h : λa&l : λhs&f as 1 : 2 : 5 : 25.
Figure 3 shows the normalized weight map.

4. Evaluation on 3DPW dataset
3DPW [19] dataset is a recent outdoor 3D human body

estimation benchmark. It provides 3D human pose and
shape ground truth captured with IMU sensors. In our work,
we only use its test set for evaluation.

Method MPJPE-PA
HMR 81.3
CMR 70.2

[8] 72.6
[2] 72.2
[17] 69.9

Ours-A 68.5
Ours-B 61.7
SPIN 59.2

Table 2. Comparison with the state-of-the-art methods on 3DPW.
SPIN and Ours-B utilize fitted SMPL parameters from SPIN for
training, while other methods do not. Without using fitted SMPL
parameters, our framework outperforms the methods using only
global features. Utilizing fitted SMPL parameters further im-
proves the performance to be competitive with the state-of-the-art
method.

In order to investigate the generalization capability of our
method, we evaluate our method on 3DPW test set. We use
extra data from COCO [12], LSP [5] and MPII [1] as weak
supervision to scale up our model (Ours-A) for fair com-
parison with prior works. We also train our model (Ours-
B) with part of the fitted SMPL parameters from SPIN.

The results are presented in Table 2. Without using fitted
SMPL parameters, our model outperforms the methods us-
ing only global features. Utilizing fitted SMPL parameters
further improves the performance to be competitive with the
state-of-the-art. It is worth notice that we did not include
the training data of LSP-extended and MPI-INF-3DHP as
SPIN. Combining our method with the in-the-loop opti-
mization process in SPIN may bring further performance
improvement.
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