
Supplementary Material
Dense Regression Network for Video Grounding

In the supplementary material, we first give the training
details of our DRN in Section A. Then, we illustrate the de-
tails of the video-query interaction module in Section B.
Next, we detail the grounding module in Section C, fol-
lowed by more qualitative results in Section D. Last, we
provide more details of “centerness” in Section E. .

A. More details about our DRN
The training details of our proposed DRN are shown in

Algorithm 1. With randomly initialized parameters, the lo-
cation regression head often fails to produce high-quality
temporal bounding box for training the IoU regression head.
Thus, we propose a three-step strategy to train the proposed
DRN. Specifically, in the first step, we fix the parameters of
the IoU regression head and train the DRN by minimizing
Equations (5) and (6). In the second step, we fix the param-
eters in DRN except for the IoU regression head and train
the DRN by minimizing Equation(7). In the third step, we
fine-tune the whole model in an end-to-end manner.

B. Details of video-query interaction module
The video-query interaction module consists of two

parts, as shown in Figure A. The first part serves as a data
preprocessor, which takes the query sentences, video frames
and temporal coordinates as input and outputs the query fea-
ture and video feature (C1). The second part is a fully con-
volutional network with vision-language fusion modules. It
is used to fuse the video feature and query feature and con-
struct a feature pyramid.

B.1. Video feature extractor

Instead of predicting a temporal bounding box at each
frame, we exploit a more efficient way to implement our
dense regression network. Specifically, we divide a video
into K segments evenly. Thus, the temporal resolution of
the video comes to K, which significantly reduces the com-
putation in our model. Then, we use our model to predict a
temporal bounding box w.r.t. the central frame of each seg-
ment. We set K as 32 for Charades-STA and ActivityNet
Captions, and 128 for TACoS dataset. Three types of fea-
ture extractor are detailed as follows:

Algorithm 1 Training details of DRN.
Input: Video V = {It}Tt=1; query Q = {wn}Nn=1

Step1: Fix the parameters of Miou

1: while not converges do
2: predict matching score m̂t

3: predict regression offset d̂t using Equation (1)
4: update DRN by minimizing Equations (5) and (6)
5: end while

Step2: Fix the parameters of G, Mmatch, and Mloc

1: while not converges do
2: predict bounding box b̂t using Equation (1)
3: predict IoU between b̂t and ground truth
4: update DRN by minimizing Equation (7)
5: end while

Step3: Fine-tune G, Mmatch, Mloc, and Miou jointly
1: while not converges do
2: predict matching score m̂t

3: predict bounding box b̂t using Equation (1)
4: predict IoU between b̂t and ground truth
5: update DRN by minimizing Equations (5), (6), (7)
6: end while

Output: Trained DRN

C3D. We use C3D [37] pre-trained on sport1M [22] to
extract features. The C3D network takes 16 consecutive
frames (a snippet) as input and the output of fc6 layer is
used as a snippet-level feature vector. The feature of each
segment is obtained by performing max-pooling among the
snippet-level features that correspond to the segment.
VGG. We use VGG16-BN [34] pre-trained on ImageNet.
VGG16-BN takes one frame as input and the output of fc7
layer is used as the frame-level feature. The segment feature
is obtained by performing max-pooling among the frame-
level features that correspond to the segment.
I3D. We use I3D [3] pre-trained on Kinetics to extract fea-
tures. The I3D network takes 64 consecutive frames (a snip-
pet) as input and outputs a snippet-level feature vector. The
feature of each segment is obtained by performing max-
pooling among the snippet-level features that correspond to
the segment.
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Figure A. The details of Video-Query Interaction Module. Note that “Conv1D (b, s)” denotes a 1D convolution layer with a kernel size of
b and a stride of s. All the convolution layers are followed by batch normalization and ReLU.
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Figure B. The details of Vision-Language-Fusion Module.
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Figure C. The details of Grounding Module. The input Pi is from the i-th level in the feature pyramid with a temporal dimension of K
2i−1 .

B.2. Query feature extractor

First, each word in the input query sentence is mapped
into a 300-dim vector using pre-trained GloVe word em-
beddings. Then, the word embeddings of the query sen-
tence are fed into a one-layer bi-directional LSTM with 512
units. Last, the sequence of hidden states is used as query
features. The hidden states of the first and the last word are
concatenated, leading to the global representation g.

B.3. Location embedding

The input temporal coordinates of the k-th segment is a
3D vector, i.e., (k−0.5

K , k+0.5
K , 1

K ). We forward it to a lin-
ear layer, leading to a 256D location embedding. The loca-

tion embedding is then concatenated with the video features
along the channel dimension.

B.4. Vision-Language Fusion Module

We apply the textual attention mechanism to the input
query feature and obtain the attended feature. Then, the at-
tended query features and the features from a lower level of
the pyramid are fused by using element-wise multiplication.
The details are shown in Figure B.

C. More details about grounding module
The grounding module involves three components, in-

cluding semantic matching head, location regression head
and IoU regression head. Both of the semantic matching
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Figure D. Qualitative results.

head and location regression head consist of two 1D con-
volution layers, and IoU regression head contains three 1D
convolution layers. The details are shown in Figure C.

D. More visualization examples

We show more qualitative results of the IoU regression
head in Figure D. The IoU regression head helps to select
the prediction that has a larger IoU with the ground truth.

E. More details about centerness

E.1. Details of centerness baseline

To compare our IoU regression with the centerness in
FCOS [28], we conduct an experiment by replacing the loss
function of IoU regression head with a centerness loss as in
[28]. Specifically, we train the model to predict a centerness
score for each location. The training target is defined as:

centerness∗ =

√
min(d∗t,s, d

∗
t,e)

max(d∗t,s, d
∗
t,e)

(1)

where d∗t,s, d∗t,e are the distances between location t and
the starting frame, the ending frame of ground truth bound-
ary respectively. We follow [28] to adopt the binary cross-
entropy loss as the loss function for centerness in our exper-
iments.
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Figure E. The location distribution of the “best location” on two
datasets. Here, the “best location” denotes the location that pre-
dicts the best grounding result for each video-query pair. We
show the statistics of their relative locations w.r.t. the ground truth,
which has been divided into three portions evenly. Here, we only
focus on the locations within the ground truth since few locations
fall outside of the ground truth.

E.2. Results of the centerness assumption

The centerness assumption [28] is that the location closer
to the center of objects will predict a box with higher local-
ization quality (i.e., a larger IoU with the ground truth). We
conduct an experiment to find out which location predicts
the best box. In our experiment, we train a model using the
semantic matching loss and location regression loss. For
each video-query pair, we select the predicted box that has
the largest IoU with the ground truth. Then, we divide the
ground truth into three portions evenly and sum up the num-
ber of the locations that predicts the best box for each por-
tion. From Figure E, more than 48% of the predictions are
not predicted by the central locations of the ground truth.


