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S1 Background

S1.1 Cryo-electron tomography

Scientists have long been trying to understand biological processes through isolating and purifying macromolecules
from a cell. Powerful techniques such as X-ray crystallography and single-particle cryo-EM have been providing near
atomic resolution structures to infer macromolecules’ function and mechanism in vitro. Despite the enormous success,
it is coming to a realization that the complex networks among cellular components rather than individual structures
define the ultimate function [1]. Fluorescence imaging, on the other hand, provides the localization and interaction
information of labeled cellular molecules. However, the resolution is much lower, and the efficiency and protein
structural perturbation of fluorophore-labeling post challenges. As our knowledge of the cell gets deeper, cryo-electron
tomography (cryo-ET) emerges as a revolutionary technique that studies all macromolecular structures, their spatial
organizations, and interactions with other subcellular components in single cells. Consequently, cryo-ET becomes the
foundation of the emerging field of in situ structural biology. Through the process of sample vitrification, thinning,
electron imaging, and data analysis, scientists can recover the subcelluar structural map inside a single cell, at the
resolution and coverage not attainable by any other techniques [2]. Moreover, by resolving the molecular differences
between healthy and disease states, cryo-ET is expected to assist not only structural biology discoveries but also medical
diagnostics in the future [3]. For example, in 2014, cryo-ET was applied for the first time to human clinical samples to
elucidate human ciliary structural defects in patients with primary ciliary dyskinesia, which the conventional diagnosing
tool EM failed 30 % of the time [4]. Later, Wang et al. [5] demonstrated the effectiveness of using cryo-ET as a
non-invasive tool to identify ovarian cancer patients by imaging their platelets. They build a simple model using the
number of mitochondria and length of microtubules in cryo-ET images and correctly predicted 20 of 23 cases. Other
studies have identified cellular structural changes in disease states such as Leigh syndrome [6], Huntington’s disease
[7], and virus infection [8].

Because the raw cryo-ET data is noisy and unlabeled, advanced data processing techniques specifically designed for
cryo-ET are needed. In the past decade, due to the development of better instruments and data collection software,
cryo-ET data is collected at an increasingly faster pace. Cryo-ET enters into the rim of high-throughput techniques
[9]. Nevertheless, the traditional exhaustive methods have very high computational and manual quality control costs
because macromolecules are of random orientation and displacement inside a tomogram. For example, without parallel
computation, scanning one structural template over one tomogram will take about a month because the parametric space
of 3D rotation and translation is huge (around hundreds of millions times correlation computation). Nowadays, many
public EM repositories have been developed such as the Electron Microscopy Data Bank (EMDB) [10] and the Electron
Microscopy Public Image Archive (EMPIAR) [11]. As more and more cryo-ET datasets are collected and open to the
public, improving the efficiency and accuracy of cryo-ET data analysis methods becomes urgent and important.

Since 2017, deep learning-based cryo-ET data analysis methods have been proposed and attracted a lot of attention.
However, the majority of them are simple supervised models for cryo-ET data classification [12] or semantic seg-
mentation [13, 14]. Creating valid training data requires intensive computation and manual quality control, which
still limits these methods at a proof-of-principle stage. On the other hand, one unsupervised model [15] has been
proposed to coarsely filter subtomograms by dimensionality reduction using an autoencoder and clustering the latent
representations using K-means. To facilitate grouping together the subtomograms containing the same structure but in
different orientations, they proposed a pose normalization step to coarsely normalize the orientation and displacement
of structures inside a subtomogram before feeding into the autoencoder. Because both the pose normalization and
clustering steps are separated from the trainable autoencoder model, this model’s accuracy is low. In practice, this
model is usually applied as a pre-processing filtering step before doing subtomogram alignment and averaging, which is
the main focus of our proposed Gum-Net model.

S1.2 Missing wedge effect

The three-dimensional cryo-tomographic image is obtained by imaging the cell sample through a series of tilt projections.
The tilt projections are subsequently feed into a reconstruction algorithm to produce 3D tomographic reconstruction.
Because of the increasing effective sample thickness during tilting, to prevent excessive electron beam damage to the
cell sample, the tilt angle range is limited typically to ±60◦ with 1◦ step size [16]. This results in a double V-shaped
missing value region (a.k.a. missing wedge) of Fourier coefficients of the reconstructed tomogram in Fourier space. The
missing wedge effect also produces image distortion in the spatial domain such as the elongation of features along the
direction of the missing wedge axis. Fortunately, in a tomogram, different copies of the same macromolecular structure
in different orientations will have different missing wedge distortions. Therefore, by aligning and averaging multiple
subtomograms of the same structure, the missing wedge effect can be eliminated to recover a higher resolution structure.
However, as a form of image distortion, the missing wedge effect must be taken into account during subtomogram

3



GUM-NET SUPPLEMENTARY MATERIALS

alignment. Figure S1 shows a noise-free proteasome structure reconstructed from different tilt angle ranges. ±90◦ tilt
angle range means there is no missing wedge angle. ±60◦ tilt angle range means 30◦ missing wedge angles. 2D slices
representation of a 3D image is the series of 2D images broken at the z-axis.

± 90o ± 80o ± 70o ± 60o

± 50o ± 40o ± 30o ± 20o ± 10o

± 60o mask

Figure S1: 2D slices representation of a noise-free proteasome structure (PDB ID: 1KP8) reconstructed from different
tilt angle ranges. The structure becomes more distorted as the missing angle increases. ±60◦ mask is a spherical
missing wedge mask for the structure with ±60◦ tilt angle range.
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S2 Implementation Details

The two most popular state-of-the-art subtomogram alignment methods are (1) high-throughput subtomogram alignment
(H-T align) [17], and (2) fast and accurate subtomogram alignment (F&A align) [18]. These two subtomogram
alignment methods are traditional geometry-based methods which do not involve a training process and thus do not
need labeled training data either. We note that there are two major approaches to tackle the missing wedge effects. One
is to estimate the missing values, such as in our spectral data imputation step, and the other is to restrict the correlation
measure to observed regions, such as in the two baseline methods [17, 18]. The relationship between the two approaches
has been discussed in our previous work [19], where we mathematically proved that some of the latter approach is
equivalent to special cases of the former approach.

H-T align has one parameter to tune, the cardinality of the set of suboptimal rigid transformations computed under a
translation-invariant upper-bound. We use default parameter 36.

F&A align has three parameters to tune: the bandwidth of the spherical function, the maximal distance allowed to shift,
and the maximal frequency in the calculation. We use the default bandwidth parameter [4, 64] and 16 (half of the image
size) as the maximal distance allowed to shift. We tuned the maximal frequency to 8 to achieve the highest accuracy for
the testing dataset of SNR 100 containing 5000 pairs of simulated subtomograms.

To demonstrate the improvement using proposed modules, we performed three ablation studies with existing modules in
[20, 21]. Namely, Gum-Net Max Pooling (Gum-Net MP) and Gum-Net Average Pooling (Gum-Net AP) are equipped
with convolution and max pooling or average pooling operations for feature extraction without the proposed DCT
spectral pooling & filtering layers. As max pooling achieves more local transformation invariance [22], we expect
Gum-Net MP’s performance to be worse than Gum-Net AP because local transformation invariance is not desirable
for geometric matching. Gum-Net Single Correlation (Gum-Net SC) is equipped with only one correlation layer for
computing the correlation map instead of using the proposed Siamese correlation layer. All the other components,
including the number of convolution layers for feature extraction and the training processes, of the three Gum-Net
baselines remain unchanged. In Gum-Net, four DCT spectral pooling & filtering layers were inserted between five
convolution layers, each resizing the feature map to 263, 183, 123, and 83 sequentially. The cropped spectra were of
size 223, 153, 103, and 73, respectively. After the fifth convolution layer, the two input feature maps to the Siamese
matching module were of size 63. The two correlation maps were each processed with two convolution layers, flattened,
and concatenated. Then, after two fully connected layers, the output is the estimated 6 rigid transformation parameters.
For the Gum-Net baseline MP and AP, the spectral pooling & filtering layers were replaced with two max pooling
layers (or average pooling) to resize the feature map to the same size 83 for the fifth convolution layer. For the Gum-Net
baseline SC, only cab was computed in the matching module. One model was trained for 500 epochs on the simulated
alignment dataset of SNR 100 using the Adam optimizer with a learning rate of 1 · 10−5 and decay 2 · 10−8 [23].
To speed up convergence, this model was used as initialization and fine-tuned for real datasets and other simulated
datasets for only 200 epochs a learning rate of 1 · 10−6 and decay 5 · 10−9. No external pre-trained models or additional
supervision was used. All models was trained on a computer with four NVIDIA GeForce Titan X Pascal GPU cores.
For transforming a subtomogram given the 3D rigid transformation parameters, Gum-Net and all the five baselines use
the trilinear interpolation method.
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Figure S2 shows the architecture of the proposed Gum-Net.
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Figure S2: Gum-Net architecture. Each colored box represents one layer. ‘32− 3× 3× 3− 1 Conv ‘valid’ denotes a
3D convolutional layer with 32 filters, kernel size 3× 3× 3, stride 1, and valid padding (no padding). ‘Spectral Pool
& filter 26× 26× 26 (22× 22× 22)’ denotes a spectral pooling & filtering layer with 26× 26× 26 output size and
22× 22× 22 cropping size. ‘FC-2000’ denotes a fully connected layer with 2000 neurons. The dash line denotes the
connected layers share weights.
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Figure S3 shows the architecture of the Gum-Net MP.
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Figure S3: Gum-Net MP architecture. Each colored box represents one layer. ‘32− 3× 3× 3− 1 Conv ‘same” denotes
a 3D convolutional layer with same padding (padding to same size as input). ‘Max pooling 2× 2× 2’ denotes a max
pooling layer with pooling factor 2× 2× 2.
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Figure S4 shows the architecture of the Gum-Net AP.
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Figure S4: Gum-Net AP architecture. Each colored box represents one layer. ‘Average pooling 2× 2× 2’ denotes an
average pooling layer with pooling factor 2× 2× 2.
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Figure S5 shows the architecture of the Gum-Net SC.
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Figure S5: Gum-Net SC architecture. Each colored box represents one layer. Different from Gum-Net, only one
correlation map cab is computed in the matching module.
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S3 Experiments

S3.1 Example input subtomograms from real datasets

Figure S6: 2D slices representation of five example subtomograms in six real datasets.
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S3.2 Example input subtomograms from simulated datasets

Figure S7: 2D slices representation of five example inputs sa (no missing wedge) from simulated datasets at different
SNRs. There are five structures in each dataset: spliceosome (PDB ID: 5LQW), RNA polymerase-rifampicin complex
(1I6V), RNA polymerase II elongation complex (6A5L), ribosome (5T2C), and capped proteasome (5MPA).
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SNR 100

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

5LQW 5T2C6A5L1I6V 5MPA

Figure S8: 2D slices representation of five example inputs sb (30◦ missing wedge) from simulated datasets at different
SNRs. There are five structures in each dataset: spliceosome (PDB ID: 5LQW), RNA polymerase-rifampicin complex
(1I6V), RNA polymerase II elongation complex (6A5L), ribosome (5T2C), and capped proteasome (5MPA).
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S3.2.1 Simulation process

To simulate realistic subtomograms, we first downloaded from Protein DataBank [24] the five representative structures:
spliceosome (PDB ID: 5LQW), RNA polymerase-rifampicin complex (1I6V), RNA polymerase II elongation complex
(6A5L), ribosome (5T2C), and capped proteasome (5MPA). The downloaded .pdb files describe the 3D structure of
macromolecular complexes using atomic coordinates, secondary structure assignments, and atomic connectivity. To
transform the 3D structure description to 3D volumes of the electron density map representing the structural templates,
we applied the Situs 2.0 PDB2VOL program [25]. The generated 3D volumes of the five structural templates are of
size 323 voxels with voxel size 1.2 nm and resolution 1.2 nm. To achieve the target resolution, the atomic structure is
convolved by a Gaussian kernel with a standard deviation half of the target resolution.

Given a structural template, we simulate subtomograms by mimicking the experimental condition and process of imaging
a cellular specimen and reconstructing a cryo-tomogram. Since the macromolecule complex inside a subtomogram is of
random orientation and displacement, we first randomly rotate and translate (up to 7 voxels) the structural template
along each of the three axes. Then we project the 3D rotated and translated volume to a series 2D projection images
with the specified tilt angle ranges and angular increment of 1◦. For sb (30◦ missing wedge), the tilt angle range is set
as ±60◦. For sa (no missing wedge), the tilt angle range is set as ±90◦. Electron optical factors including the contrast
transfer function (CTF) and the modulation transfer function (MTF) need to be simulated at this stage. Images in a
typical transmission electron microscope are modulated in a spatial frequency-dependent manner described by the CTF
[26]:

CTF(f) = A(sin(πλf2(∆z − 0.5λ2f2cs)) +B cos(πλf2(∆z − 0.5λ2f2cs))), (1)

where f denotes the spatial frequency, λ denotes the electron wavelength, ∆z denotes the defocus, cs denotes the
spherical aberration, A denotes the defocus-dependent envelope function, and B denotes the fraction of amplitude
contrast. Simulating the imaging inaccuracies due to CTF is essential for producing realistic simulated cryo-ET data.

Modulation refers to the contrast between bright and dark regions of an image [27]. The MTF, equivalent to the optical
transfer function without phase effects, describes how much contrast in the original cellular specimen is maintained by
the transmission electron microscopy:

MTF(f) =
1√
2π

∫ ∞
−∞

l(x)ei2πfxdx, (2)

where f denotes the spatial frequency, l denotes the line spread function, and x denotes the spatial distance. Since the
spatial frequency content of the specimen is not strictly transferred to the image, taking into account the MTF is vital to
cryo-ET data simulation.

We convolved the projection images with the CTF and MTF to obtain the simulated electron micrographic images.
The CTF and MTF parameters are similar to the experimental settings with voltage as 300kV, defocus as −2.0 µm,
and spherical aberration 2.7mm. Gaussian noise is added to the electron micrographic images to achieve the target
signal-to-noise ratio (SNR). Finally, the electron micrographic images are back-projected to obtain the reconstructed
subtomogram [28]. All the five datasets, each containing 10500 subtomogram pairs, were simulated in this manner.
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S3.3 Subtomogram alignment results details

The following tables show the alignment accuracy of the five specific structures from manuscript Table 1. At SNR
close to experimental condition (0.1 to 0.01), Gum-Net generally outperformed all baselines on aligning all the five
structures. The comparison between Gum-Net and the three Gum-Net ablation baselines demonstrated that both the
proposed feature extraction module and the Siamese matching module are effective for improving the subtomogram
alignment accuracy. Gum-Net performs slightly worse than the three ablation baselines on aligning ribosome structure
at SNR 0.01. The potential reason is the training instability at a low SNR. In the future, we will continue to test different
training and optimization strategy to reduce the instability.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.06±0.02, 1.03±0.63 0.61±0.87, 2.64±3.55 1.62±1.14 6.08±4.92 2.15±0.88, 8.49±4.72 2.38±0.56, 11.36±5.13
F&A align 0.08±0.13, 1.09±1.14 0.64±0.97, 2.96±3.99 1.68±1.16, 6.32±4.91 2.12±0.89, 8.39±4.79 2.35±0.59, 11.2±5.00

Gum-Net MP 0.54±0.61, 2.18±2.53 1.02±0.70, 4.07±3.16 1.25±0.78, 4.89±3.30 1.38±0.75, 5.41±3.31 1.65±0.78, 6.79±3.08
Gum-Net AP 0.39±0.54, 1.67±2.22 0.87±0.65, 3.56±2.78 1.12±0.74, 4.45±3.00 1.29±0.74, 5.07±3.09 1.60±0.81, 6.69±3.11
Gum-Net SC 0.51±0.59, 2.02±2.43 0.96±0.71, 3.83±3.13 1.22±0.79, 4.76±3.28 1.38±0.76, 5.28±3.33 1.65±0.78, 6.82±3.20

Gum-Net 0.27±0.54, 1.13±2.03 0.47±0.57, 1.94±2.26 0.68±0.64, 2.61±2.25 0.93±0.68, 3.62±2.32 1.38±0.78, 5.65±3.31

Table S1: Spliceosome (5LQW) subtomogram alignment accuracy on five datasets with SNR specified. In each cell,
the first term is the mean and standard deviation of the rotation error and the second term, the translation error. We
highlighted Gum-Net results that are significantly better (p < 0.001) than all baselines by the paired sample t-test.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.63±0.99, 3.15±4.27 1.67±1.06, 6.31±5.01 2.09±0.87, 7.65±4.56 2.22±0.74, 8.10±4.43 2.40±0.57, 10.93±4.97
F&A align 0.67±1.00, 3.22±4.24 1.71±1.08, 6.63±4.96 2.06±0.90, 7.76±4.67 2.23±0.74, 8.48±4.62 2.37±0.56, 10.94±4.98

Gum-Net MP 0.92±0.78, 3.53±3.31 1.38±0.75, 5.25±3.53 1.50±0.76, 5.70±3.65 1.59±0.76, 6.08±3.54 1.66±0.77, 7.06±3.39
Gum-Net AP 0.83±0.79, 3.22±3.25 1.25±0.76, 4.75±3.37 1.39±0.76, 5.35±3.49 1.53±0.75, 5.81±3.46 1.65±0.77, 7.02±3.35
Gum-Net SC 0.90±0.80, 3.39±3.27 1.26±0.77, 4.83±3.58 1.42±0.77, 5.43±3.62 1.53±0.76, 5.73±3.47 1.68±0.76, 6.96±3.52

Gum-Net 0.56±0.78, 2.22±3.05 0.75±0.77, 2.99±3.17 0.87±0.76, 3.49±3.31 1.05±0.71, 3.96±2.77 1.42±0.78, 5.66±3.53

Table S2: RNA polymerase-rifampicin complex (1I6V) subtomogram alignment accuracy on five datasets with SNR
specified.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.09±0.10, 1.11±0.82 0.94±0.95, 3.75±4.03 1.74±1.02, 6.31±4.60 2.21±0.75, 8.69±4.56 2.37±0.55, 11.58±5.02
F&A align 0.16±0.34, 1.31±1.62 1.06±1.06, 4.31±4.41 1.85±0.99, 6.99±4.85 2.18±0.79, 8.69±4.55 2.39±0.58, 11.31±4.83

Gum-Net MP 0.66±0.69, 2.52±2.73 1.13±0.74, 4.27±3.09 1.30±0.75, 4.80±3.11 1.45±0.76, 5.45±3.09 1.66±0.77, 6.99±3.28
Gum-Net AP 0.48±0.58, 1.83±2.00 0.98±0.67, 3.72±2.74 1.20±0.72, 4.45±2.85 1.40±0.74, 5.29±3.02 1.64±0.77, 6.97±3.33
Gum-Net SC 0.60±0.64, 2.24±2.33 1.07±0.73, 4.02±3.03 1.26±0.76, 4.56±3.07 1.47±0.77, 5.48±3.14 1.65±0.76, 6.89±3.33

Gum-Net 0.30±0.55, 1.08±1.71 0.46±0.54, 1.80±1.90 0.71±0.63, 2.55±2.12 1.12±0.73, 3.93±2.45 1.45±0.76, 5.94±3.32

Table S3: RNA polymerase II elongation complex (6A5L) subtomogram alignment accuracy on five datasets with SNR
specified.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.06±0.02, 0.99±0.60 1.16±1.04, 4.43±4.21 2.13±0.84, 8.79±4.77 2.34±0.61, 10.59±4.98 2.36±0.59, 11.56±4.91
F&A align 0.05±0.03, 0.98±0.61 1.54±1.12, 6.39±5.19 2.17±0.80, 9.39±5.09 2.35±0.58, 10.81±4.93 2.40±0.55, 11.81±4.89

Gum-Net MP 1.31±1.10, 4.49±4.18 1.58±0.83, 5.51±3.07 1.71±0.80, 6.28±3.16 1.70±0.80, 6.72±3.13 1.70±0.78, 8.27±3.58
Gum-Net AP 0.64±0.9, 2.36±3.22 1.30±0.79, 4.71±2.76 1.58±0.80, 5.94±3.05 1.63±0.81, 6.70±3.20 1.68±0.78, 8.14±3.51
Gum-Net SC 0.77±0.93, 2.73±3.37 1.41±0.79, 4.90±2.94 1.63±0.79, 5.98±3.11 1.66±0.80, 6.54±3.15 1.71±0.77, 8.35±3.64

Gum-Net 0.43±0.87, 1.67±3.31 0.73±0.81, 2.70±2.87 1.19±0.84, 4.23±3.01 1.43±0.79, 5.67±2.96 1.76±0.75, 10.46±5.10

Table S4: Ribosome (5T2C) subtomogram alignment accuracy on five datasets with SNR specified.
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Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.65±0.95, 2.81±3.44 1.72±0.99, 6.65±4.55 2.08±0.88, 7.47±4.46 2.16±0.81, 8.42±4.47 2.38±0.58, 11.22±5.03
F&A align 0.69±0.97, 3.02±3.72 1.73±1.01, 6.69±4.71 1.97±0.94, 7.26±4.67 2.24±0.79, 8.59±4.69 2.39±0.56, 11.33±4.88

Gum-Net MP 1.08±0.85, 3.98±3.48 1.40±0.80, 5.52±3.60 1.43±0.78, 5.63±3.44 1.53±0.76, 6.12±3.45 1.68±0.77, 7.30±3.33
Gum-Net AP 0.66±0.61, 2.51±2.31 1.05±0.69, 4.28±2.92 1.19±0.73, 4.78±3.04 1.37±0.73, 5.64±3.22 1.66±0.77, 7.10±3.27
Gum-Net SC 0.74±0.66, 2.77±2.53 1.12±0.76, 4.47±3.30 1.24±0.78, 4.92±3.40 1.38±0.77, 5.71±3.43 1.66±0.78, 7.16±3.35

Gum-Net 0.48±0.67, 1.86±2.53 0.68±0.64, 2.61±2.46 0.89±0.72, 3.13±2.68 1.12±0.72, 4.25±2.73 1.46±0.78, 6.22±3.38

Table S5: Capped proteasome (5MPA) subtomogram alignment accuracy on five datasets with SNR specified.

Gum-Net F&A align H-T align

Figure S9: Heatmaps pf the pairwise subtomogram alignment correlation matrix for the rat neuron culture dataset by
three methods.

We use heatmaps to visualize the pairwise subtomogram alignment experimental results (manuscript Section 4.3) from
the rat neuron culture dataset. The first 100 subtomograms contain ribosomes and the rest 100 subtomograms contain
capped proteasomes. Clearly, the correlation matrix computed by Gum-Net shows better clustering patterns, which
results in a 92% accuracy applying the complete-linkage hierarchical clustering algorithm with k = 2. In comparison,
F&A align has a much lower accuracy of 65% and H-T align, 53.5%.
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S3.4 2D slices representation

The 2D slices representation of the structures in manuscript Figure 3 and 4 are plotted here for a more detailed view.

5LQW

5T2C

6A5L

1I6V

5MPA

Figure S10: 2D slices representation of the structures in manuscript Figure 5.
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Figure S11: 2D slices representation of the structures in manuscript Figure 4.

S3.5 Mathematical definition of metrics

S3.5.1 SNR

Subtomogram signal-to-noise ratio (SNR) is defined in Equation 3.61 in [29]. When two subtomogram containing the
same structure at a certain SNR are optimally aligned, we can calculate the Pearson’s correlation c between them. The
SNR is defined as:

SNR =
c

1− c
(3)

The higher the SNR, the better the signal. When there is no noise, the expected Pearson’s correlation c will be equal to
1 and the SNR will reach infinity. Where the subtomograms are of pure noise, the expected Pearson’s correlation c will
be equal to zero and the SNR will be zero.

S3.5.2 FSC

Fourier shell correlation (FSC) is defined as [30]:

FSC(r) =

∑
ri∈r F1(ri) · F2(ri)

∗√∑
ri∈r |F1(ri)|2 ·

∑
ri∈r |F2(ri)|2

(4)

where F1 is the complex structure factor for subtomogram average 1, F ∗2 is the complex conjugate of the structure
factor for subtomogram average 2, and ri is the individual voxel element at radius r of the corresponding shell in
Fourier space. We chose the standard FSC 0.143 cutoff as the resolution value, which measures the r corresponds to
the correlation coefficient equal to 0.143 [31, 32]. For simulated data, the subtomogram average is compared with the
noise-free structural template used to generate the simulated subtomograms. For real data, we do not have an accurate
structural template because even if the structure is known, it may appear differently in the real data due to structural
dynamics, different species, and different experimental conditions. Therefore, we use the gold-standard procedure [33]
by dividing the real subtomograms into two independent sets, averaging them separately, and comparing subtomogram
average 1 and subtomogram average 2 using the Fourier shell correlation.
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