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A. Implementation Details

In our experiments, the backbone for PCNet-M is
UNet [1]] with a widening factor 2, and that for PCNet-C is
a UNet equipped with partial convolution layers [2]; while
note that PCNets do not have restrictions on backbone ar-
chitectures. For both PCNets, the image or mask patches
centering on an object are cropped by an adaptive square
and resized to 256x256 as inputs.

For COCOA, the PCNet-M is trained using SGD for 56K
iterations with an initial learning rate 0.001 decayed at iter-
ations 32K and 48K by 0.1. For KINS, we stop the training
process earlier at 32K. The batch size is 256 distributed on 8
GPUs (GTX 1080 TT). The hyper-parameter v that balances
the two cases in training PCNet-M is set to 0.8. In cur-
rent experiments, we do not use RGB as an input to PCNet-
M, since we empirically find that introducing RGB through
concatenation makes little differences. It is probably be-
cause for these two datasets, modal masks are informative
enough for training; while we believe in more complicated
scenes, RGB will exert more influence if introduced in a
better way.

For PCNet-C, we modify the UNet to take in the con-
catenation of image and modal mask as the input. Apart
from the losses in [2], we add an extra adversarial loss
for optimization. The discriminator is a stack of 5 convo-
lution layers with spectral normalization and leaky ReLU
(slope=0.2). The PCNet-C is fine-tuned for 450K iterations
with a constant learning rate 10~* from a pre-trained in-
painting network [2]]. We adapt the pre-trained weights to
be compatible for taking in the additional modal mask.
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Figure 1. Performances of different approaches under a growing
occlusion ratio, evaluated on KINS testing set.

B. Discussions
B.1. Analysis on varying occlusion ratio.

Fig.[T]show the amodal completion performances of dif-
ferent approaches under varying ratios of occluded area.
Naturally, larger occlusion ratios result in lower perfor-
mances. Under high occlusion ratios, our full method (Ours
(OG)) surpasses the baseline methods by a large margin.

B.2. Does it support mutual occlusion?

As a drawback, our approach does not support cases
where two objects are mutually occluded as shown in [2}
because our approach focuses on object-level de-occlusion.

Figure 2. Mutual occlusion cases. Green boundaries show one
object occlude the other and red boundaries vice versa.
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Figure 3. (a-1) and (a-2) represent case 1 and case 2 in training,
respectively; (b) - (d) represent possible cases in testing. Among
the test cases, only the A in (b) will be completed.

For mutual occlusions, the ordering graph cannot be de-
fined, therefore fine-grained boundary-level de-occlusion is
required. It leaves an open question to scene de-occlusion
problem. Nonetheless, our approach works well if more
than two objects are cyclically occluded as shown in Fig. 7
in the main paper.

B.3. Will case 2 mislead PCNet-M?

As shown in Fig[3] one may have concerns that in case
(a-2) when not-to-complete strategy is applied, the bound-
ary between A and B\ A might include a contour shown
in green where A is occluded by a real object, namely C.
Therefore, it might teach PCNet-M a wrong lesson if the
yellow shaded region is taught not to be filled.

Here we explain why it will not teach PCNet-M the
wrong lesson. First of all, PCNet-M learns to complete or
not to complete the target object conditioned on a surrogate
occluder. As shown in Fig.[3] as PCNet-M is taught to com-
plete A\B in (a-1) while not to complete A in (a-2), it has
to discover cues indicating that A is below B in (a-1) and
A is above B in (a-2). The cues might include the shape
of two objects, the shape of common boundary, junctions,
etc. In testing time, e.g. in (b) when regarding the real C' as
the condition, it is easy for PCNet-M to tell that C' is above
A from those cues. Therefore PCNet-M actually inclines to
case 1, when A will be completed conditioned on C'.

Then which case does this not-to-complete strategy af-
fect? The case in (c) shares very similar occlusion pat-
terns with (a-2), especially in the upper right part of the
common boundary, showing strong cues that A is above C,
in which case PCNet-M will not complete A as expected.
However, case (c) is abnormal and unlikely to exist in the
real world. The situation where the not-to-complete strategy
really takes effect lies in case (d). In this case when strong
cues indicate that A is above D, the PCNet-M is taught not
to extend A across A& D boundary to invade D.

C. Visualization

As shown in Fig. 4] our approach enables us to freely ad-
just scene spatial configurations to re-compose new scenes.
The quality could be further improved with the advance of
image inpainting, since the PCNet-C shares a similar net-
work architecture and training strategy to image inpainting.
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Figure 4. Scene manipulation results based on our de-occlusion framework. Inconspicuous changes are marked with red arrows. A video
demo can be found in the project page: https://xiaohangzhan.github.io/projects/deocclusion/\
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