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Abstract

In this supplementary material, we first present the
details about the loss functions used in CPGAN. Then,
more qualitative results on Multi-PIE (indoor) and
CelebA (in the wild) datasets are performed. Meanwhile,
we present the effect of our proposed illumination com-
pensation loss on the face hallucination. Finally, we
elaborate the training details of our RaIN model.

1. Loss Function

To train our CPGAN framework, we propose an il-
lumination compensation loss (Lic) together with an in-
tensity similarity loss (Lmse), an identity similarity loss
(Lid) [16], a structure similarity loss (Lh) [2] and an ad-
versarial loss (Ladv) [3].

1.1. Illumination Compensation Loss:

CPGAN not only recovers UI-HR face images but
also compensates for the non-uniform illumination. In-
spired by the style loss in AdaIN [6], we propose the
illumination compensation loss Lic. The basic idea is to
constrain the illumination characteristics of the recon-
structed UI-HR face that is close to the guided UI-HR
one in the latent subspace:
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where gi represents the guided UI-HR image, ĥi rep-
resents the generated UI-HR image, p(ĥ,g) represents
their joint distribution. Each ϕ j(·) denotes the output of
relu1-1, relu2-1, relu3-1, relu4-1 layer in a pre-trained
VGG-19 model [17], respectively. Here, µ and σ are the
mean and variance for each feature channel.

1.2. Intensity Similarity Loss

To enforce the generated UI-HR images ĥi to approx-
imate to the ground truth (GT) images hi in intensity
level, pixel-wise Mean Square Error (MSE) loss Lmse is
introduced:

Lmse = E(ĥi,hi)∼p(ĥ,h)
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where t is the parameters of the upsampling network C
in CPGAN. li represents the input NI-LR face image.
p(ĥ,h) represents the joint distribution of the generated
UI-HR face ĥi and the corresponding UI-HR GT im-
age hi, respectively. p(l,h) represents the joint distribu-
tion of the input NI-LR and GT images in the training
dataset. Frankly, the MSE loss leads to high peak signal-
to-noise ratio (PSNR) values. However, only employing
the MSE loss in feed-forward optimization is insuffi-
cient to capture the high-frequency features, resulting in
overly smooth facial details.



1.3. Identity Similarity Loss

Identity similarity is one of the most important parts
for face hallucination [16]. We adopt Resnet50 [5] net-
work with pre-trained parameters to extract the feature
maps of high-level facial features, enabling the identity
preserving ability for CPGAN:

Lid = E(ĥi,hi)∼p(ĥ,h)
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where Φ(·) represents the extracted feature maps from
the AveragePooling layer in Resnet50 [5].

1.4. Structure Similarity Loss

To constrain the structural consistency between the
generated UI-HR image and the GT image, the structure
similarity loss [19] is also introduced to our framework:

Lh = E(li,hi)∼p(l,h)
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where Hk(·) represents the heatmap corresponding to
the k-th landmark. Hk

(
C̃t (li)

)
represents the k-th pre-

dicted heatmap, which is estimated by adopting the
stacked hourglass module [14] on the intermediate up-
sampled features in CPGAN. Hk (hi) denotes the k-th
ground-truth heatmap obtained by running a Face Align-
ment Network (FAN) [1] on the GT image.

1.5. Adversarial Loss

The adversarial loss is introduced to encourage the
generated UI-HR face images to reside in the manifold
of the GT ones. Thus, the loss function of discriminator
is:

LD =−E(ĥi,hi)∼p(ĥ,h)

[
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where D and d represent the discriminative network and
its parameters. The goal of the discriminative network
is to distinguish the hallucinated UI-HR faces from the
GTs.

However, the upsampling network is designed to pro-
duce realistic UI-HR images to fool the discriminative
network. Thus, the corresponding adversarial loss is:

Ladv =−Eĥi∼p(ĥ) log
(
Dd

(
ĥi
))

=−Eli∼p(l) log(Dd (Ct (li))) .
(6)

During training, we minimize the loss LD and update the
parameters d for the discriminative network. For train-
ing upsampling network, we minimize the loss Ladv to
update the parameters t.

1.6. Total Loss Function

The overall loss function is the weighted sum of the
above terms:

LG = αLmse +βLid + γLh +ζ Lic +ψLadv. (7)

2. Experiments

Table 1. Ablation study on the training loss

Multi-PIE CelebA

PSNR SSIM PSNR SSIM

w/o
Lic

L−G 21.948 0.689 21.003 0.516
L†

G 22.813 0.694 21.674 0.552
L‡

G 23.022 0.701 21.853 0.588
L?

G 22.624 0.692 21.241 0.543

w/
Lic

L−G 22.943 0.693 23.262 0.699
L†

G 23.036 0.718 24.103 0.731
L‡

G 25.104 0.782 24.948 0.755
L?

G 24.639 0.778 23.972 0.723

2.1. Experiment Setting

CPGAN is trained and tested on the Multi-PIE
dataset [4] (indoor) and the CelebFaces Attributes
dataset (CelebA) [12] (in the wild). For the face images
in Multi-PIE dataset, all face regions are cropped by the
keypoint location∗. For the CelebA images, the face re-
gions are cropped by the Landmarks Annotations †. The
NI-LR/UI-HR face pairs from various illumination con-
ditions and identities are required for this framework.
For each identity, the face image with uniform illumina-
tion is served as the GT image. During the training and
testing processes, the external guided UI-HR images are
randomly selected from the UI-HR ones.

Our model is implemented with Pytorch. During
training, the ADAM optimizer [7] is adopted to optimize
CPGAN. We set parameters β1 = 0.9, β2 = 0.999 and ε=
10−8. The learning rate is set to 10−3, and multiplied by
0.99 after each epoch. The trade off weights α,β ,γ,ζ ,ψ
in overall loss function are set to 1, 10−3, 10−2, 1, 10−2,
respectively. Similar to [21], spectral normalization [13]
is introduced for both our upsampling network and dis-
criminator to stabilize the training of CPGAN. The train-
ing codes and details will be released on our website.

2.2. Additional Qualitative Results

Additional qualitative results are presented in Fig.1
(Multi-PIE) and Fig.2 (CelebA), which justify the su-
∗https://github.com/HRLTY/TP-GAN
†http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html



perior performance of our CPGAN over the competing
methods.

2.3. Additional Quantitative Results

Table 1 reports the performance of different CPGAN
variants (trained with different loss combinations) on
the hallucinated results. As indicated in Table 1, our
proposed illumination compensation loss (Lic) also im-
proves the quantitative results. With a slight abuse of no-
tation, we denote:
• L−G : Lmse,

• L†
G: Lmse+Lid ,

• L‡
G: Lmse+Lid+Lh,

• L?
G: Lmse+Lid+Lh+Ladv.

2.4. Comparisons with SoA on Face Recognition

We employ a state-of-the-art pretrained face recogni-
tion model (SphereFaceNet [11]) to conduct face recog-
nition experiments on the Multi-PIE database. The NI-
LR images of 50 different individuals under 20 illumina-
tion conditions are chosen and hallucinated by the com-
pared techniques. The UI-HR image with normal illumi-
nation of each individual is selected as the ground truth
to construct the gallery set. For each testing image, we
extract the deep features (SphereFace) [11] from the out-
put of the FC1 layer in SphereFaceNet model. Tab. 2
indicates the face recognition results of the compared
methods.

Table 2. Testing accuracies of different methods on face recog-
nition experiment

SR method Accuracy

IN+FH FH+IN

Bicubic 48.12% 49.84%
SRGAN [9] 50.68% 51.09%
TDAE [20] 52.26% 52.97%

FHC [18] 65.29%

NI-LR 61.21%

UI-HR 98.13%

CPGAN 84.36%

3. Data Generation based on RaIN
3.1. Training Settings

We first train the RaIN model using MS-COCO‡ [10]
and WikiArt§ [15] for the content and style images,
‡http://cocodataset.org/home
§https://www.wikiart.org/

respectively. Both datasets consist of approximately
80,000 images. To encode the photo-realistic facial de-
tails, we incorporate the fine-tuning procedure on the
Multi-PIE dataset [4]. During training and fine-tuning
processes, we adopt the ADAM optimizer [7] using a
batch size of 8 content-style image pairs. Other settings
are similar to [6]. Inspired by [6, 8], we incorporate the
content, style, reconstruction (for feature statistics (µ
and σ ) of the fs) and Kullback-Leibler divergence (for
feature statistics (µ and σ ) of the fs) losses to optimize
our RaIN model.

3.2. Training Details

Based on the trained RaIN model, we feed the content
image (the face image with uniform illumination) along
with a random noise to generate the stylized images with
a different illumination condition. Fig.3 performs some
generated NI-HR face samples.

For training our CPGAN, we resize the generated
stylized face samples (with various illumination condi-
tions) to 128×128 pixels and then apply 2D transforms,
including rotations, translations, scaling and downsam-
pling, to obtain the NI-LR images of 16×16 pixels. For
the UI-HR images, we resize the corresponding content
ones to 128×128 pixels. In this way, we generated suf-
ficient NI-LR/UI-HR face pairs for training and testing
of our CPGAN model.

To capture uneven illumination style, the color tone
of the generated NI-HR samples by our RaIN model
is slightly different from the face images in Multi-PIE
dataset. When we downsample the generated NI-HR
faces, this color jittering can be largely reduced (see
Fig. 4). Benefiting from the guided HR image, CPGAN
achieves natural color tune similar to the guided im-
age; while faithfully hallucinating the NI-LR face im-
ages with both finer details and global shapes. Therefore,
our CPGAN achieves superior performance in compari-
son with the state of the arts.
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Figure 1. Hallucinated results for the samples in Multi-PIE dataset. In each subfigure, the images in the first and second columns are
the input NI-LRs (under various illuminations) and the hallucinated UI-HRs. The images in the third column are the corresponding
GTs.



Figure 2. Hallucinated results for the samples in CelebA dataset. Comparison with state-of-the-art methods. Columns: (a) Unaligned
NI-LR inputs. (b) Bicubic interpolation + CycleGAN [22]. (c) SRGAN [9]. (d) TDAE [20]. (e) FHC [18]. (f) CycleGAN [22] +
SRGAN [9]. (g) TDAE [20] + CycleGAN [22]. (h) Ours. (i) GTs.



Figure 3. The NI-HR face samples generated by RaIN model.



Figure 4. Illustration of the generated NI-LR/UI-HR face pairs. (a) UI-HR image (Original UI-HR face in Multi-PIE). (b) The
NI-HR face images generated by RaIN. (c) Corresponding NI-LR faces. (Spatially transformed and downsampled version of (b)).
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