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1. More Experimental Details
1.1. Details of the Datasets

MARS [9] is a large-scale benchmark dataset for video-
based person reID. It is captured by six cameras deployed in
a university and contains 17503 tracklets corresponding to
1261 identities in total, of which 625 identities are used for
training while the other 636 identities are used for testing.
Besides, the additional 3248 tracklets are taken as distrac-
tors. The average number of frames per tracklet is 59. The
bounding boxes for the target person are detected by De-
formable Part Model (DPM, [2]) and tracked by the GMCP
tracker [8].

iLIDS-VID [7] contains 600 video tracklets of 300 iden-
tities captured by 2 cameras. The length of sequences
ranges from 23 to 192 frames with an average number of
73 frames. The bounding boxes are manually annotated.

PRID2011 [4] consists of 400 video tracklets of 200
identities from 2 cameras. The sequence length varies from
5 to 675. As in the previous works [9, 10, 5], we select
video sequences with more than 21 frames for training and
testing, leading to 178 identities. The bounding boxes are
manually annotated.

1.2. Details of the Evaluation Metrics

The Cumulative Matching Characteristic (CMC) and the
mean average precision (mAP) are used for evaluation. We
use CMC to represent the number of true matching samples
within the first k ranking results, which indicates the accu-
racy of person retrieval. Following the common practices,
we report Rank-1, Rank-5, Rank-10, and Rank-20 accu-
racy, and also use mAP to evaluate the model performance
in MARS. We obtain the average precision (AP) for each
query and calculate the mean value of AP across all queries
to obtain the mAP accuracy.

1.3. Implementation Details

For all the reported models, the backbone network is pre-
trained on ImageNet [1] and both identification (cross en-
tropy) loss with label smoothing [6] and triplet loss with

Table 1: Performance (%) of using single granularity
reference-aided attentive feature aggregation (SG-RAFA) at
different granularities. “SG” denotes “Single-Granularity”
and “MG” denotes ”Multi-Granularity”. N denotes the
number of granularities. G-1st denotes the finest granularity
with the spatial resolution of 16× 8 for Fall and FR, while
G-4th denoting the coarsest granularity with the spatial res-
olution of 2× 1 for Fall and FR.

Models
MARS

mAP R-1 R-5 R-10 R-20

Baseline 82.1 85.9 95.1 96.5 97.3
SG-RAFA (G-1st) 84.9 88.4 96.6 97.6 98.5
SG-RAFA (G-2nd) 84.6 87.5 96.5 97.2 98.0
SG-RAFA (G-3rd) 84.2 87.4 95.8 97.1 97.9
SG-RAFA (G-4th) 83.2 86.7 95.3 96.7 97.7
MG-RAFA (N=4) 85.9 88.8 97.0 97.7 98.5

hard mining [3] are used. We use Adam optimizer with a
weight decay of 5 × 10−4. We warm up the models for 20
epochs with a linear growth learning rate from 8× 10−6 to
8 × 10−4. Then, the learning rate is decayed by a factor of
0.5 for every 40 epochs. We observe that the models con-
verge after a training of 320 epochs and we use them for
testing. All our models are implemented with PyTorch and
trained on two P40 GPUs.

2. More Ablation Studies

2.1. Performance of Different Granularities

In the paper, we have demonstrated the effectiveness of
using multiple granularities and compared the correspond-
ing performance with that using a single granularity in Sec-
tion 4.3.1. For the single granularity setting in our paper,
we use the finest granularity, i.e., G-1st. Here, we study the
performance of using other granularity alone, e.g., G-2nd,
G-3rd, G-4th, respectively, and show the results in Table 1.
Here, G-1st denotes the finest granularity with the spatial
resolution of 16× 8 for Fall and FR, while G-4th denoting
the coarsest granularity with the spatial resolution of 2 × 1



Table 2: The ablation study of different pooling strategies
to obtain coarse granularity features. “Max-Pooling” de-
notes max pooling strategy while “Avg-Pooling” denoting
average pooling strategy.

Models
MARS

mAP R-1 R-5 R-10 R-20

Baseline 82.1 85.9 95.1 96.5 97.3
Max-Pooling 84.1 87.3 95.9 97.4 98.0
Avg-Pooling (Ours) 85.9 88.8 97.0 97.7 98.5

for Fall and FR. Note that S (which denotes the number
of splits(groups) along the channel dimension for masking
attention on each split respectively) is set as four for these
schemes.

From Table 1, we observe that: (1) our proposed
MG-RAFA (N=4) is superior to all the single-granularity
schemes, which indicates that the exploration of different
level semantics at different granularities are complementary
and the joint exploration is effective. (2) All the SG-RAFA
schemes of different granularities outperform the scheme
Baseline consistently, which demonstrates the effectiveness
of our proposed reference-aided attentive feature aggrega-
tion solution.

2.2. Study on Pooling Strategies

To obtain the features at coarse granularity, we perform
average pooling on spatial feature positions (as described in
Section 3.3 in our paper). We study the influence of dif-
ferent pooling strategies, including max pooling operation
(denoted by “Max-Pooling”), and average pooling opera-
tion (denoted by “Avg-Pooling”). The results are shown in
Table 2. We observe that average pooling strategy outper-
forms max pooling by 1.8% in mAP and 1.5% in Rank-1
respectively. Intuitively, average pooling can keep more in-
formation than max pooling and is robust to noise.

2.3. Multi-Granularity Design for Fall and FR

In our proposed scheme MG-RAFA, for each coarse gran-
ularity, both the spatial temporal feature nodes Fall and
reference nodes FR are spatially average pooled to have a
lower resolution. This ensures that the relation modeling
and attention learning are at the same semantics level for
each granularity. We validate the effectiveness of model-
ing at the same semantics levels in Table 3. Here, SG-Fall

denotes the scheme that we only generate multi-granularity
features for the S-RFNs (i.e. FR) while using the original
granularity features for the spatial temporal features Fall.
We compare SG-Fall to our final scheme MG-RAFA which
generates multi-granularity features for Fall (denoted by
MG-Fall). We observe that MG-Fall outperforms SG-
Fall by 2.6% in mAP and 2.4% in Rank-1, demonstrating
the effectiveness of our matched multi-granularity design.

Table 3: The comparison of using single-granularity frame-
level features (denoted by “SG-Fall”) and using multi-
granularity frame-level features (denoted by “MG-Fall”) in
the feature aggregation with multi-granularity S-RFNs.

Models
MARS

mAP R-1 R-5 R-10 R-20

Baseline 82.1 85.9 95.1 96.5 97.3
SG-Fall 83.3 86.4 95.1 96.4 97.2
MG-Fall (MG-RAFA) 85.9 88.8 97.0 97.7 98.5

3. More Visualization

In this section, we visualize the attention masks learned
by our proposed multi-granularity reference-aided attentive
feature aggregation (MG-RAFA) scheme across different
frames and granularities on four video sequences in Table
1. Note that in our paper, we only partially show the visual-
ization results due to space limitation.

From Figure 1, we have several observations. (1) The
learned attention tends to focus on different semantic re-
gions from different frames, which gets rid of a lot of rep-
etitions (redundancy). (2) The learned attention is able to
select the better represented areas (e.g., at the 2nd granular-
ity (G-2nd) of the right-bottom example, the shoe region in
the 8th frame is clearly visible and thus has high response)
and exclude the interferences (e.g., at all granularities of the
left-top example, the left regions are not attenteded because
there are occlusions). (3) It seems our model captures dif-
ferent semantics at different granularities, which tends to
capture more details at finer granularities and larger body
parts at coarser granularities. At the coarsest granularity, i.e.
G-4th, it seems the attention plays a role of selecting some
frames to exclude redundancy. We believe our reference-
aided attention modeling is an effective method to capture
and learn discriminative spatial and temporal representa-
tion.
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Figure 1: Visualization for the learned attention masks of our proposed MG-RAFA across different frames (columns) and
granularities (rows). G-1st to G-4th denote the 1st to the 4th granularities, and the corresponding spatial resolutions of the
attention masks for each frame are 16×8, 8×4, 4×2, 2×1, respectively. For different granularities, we rescale the attention
masks of different spatial resolutions to the same resolution for visualization.
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