Supplementary Materials: Nested Scale-Editing for Conditional Image Synthesis

In this section, we discuss the implementation details
and demonstrate more qualitative results of our experiments
on multimodal image outpainting, image super-resolution,
cross-domain image translation, and text-to-image transla-
tion.

A. Image Outpainting

The detailed implementation of our decoder network ar-
chitecture for image inpainting is shown in Fig.3 in the main
paper. At each spatial scale, the number of channels for fea-
ture activation is 512. The conditional code is the feature
vector of the occluded image encoded by a standard encoder
network. The detailed implementations of the encoder net-
work are listed in Table 1. We use negative slope of 0.2 for
all LeakyReL.U layers throughout the network. We employ
the following abbreviation: N = Number of filters, K = Ker-
nel size, S = Stride, P = Padding. ”Conv” and ”SN” denote
convolutional layer and instance normalization respectively.

Layer Hyper-parameters

1 Conv(N64-K4-S2-P1) + LeakyReLU

2 Conv(N128-K4-S2-P1) + IN + LeakyReLU
3 Conv(N256-K4-S2-P1) + IN + LeakyReLLU
4 Conv(N512-K4-S2-P1) + IN + LeakyReLLU
5 Conv(N256-K4-S2-P1) + IN + LeakyReLLU
6 Conv(N256-K4-S2-P1) + IN + LeakyReLLU
7 Conv(N128-K1-S2-P1) + LeakyReLU

Table 1: Encoder network for image outpainting and super-
resolution.

The weights for the adversarial loss, disentangle loss,
and diversity loss are all set to be ones. To enforce the di-
versity of synthesis, we sample N = 4 random variables at
each iteration. We set the relaxation hyperparemeter « in
the diversity hinge loss to be 0.8. With batch size of 24, we
train the network using Adam optimizer [3] with learning
rate of 2e-4, betal of 0.5, beta2 of 0.999.

B. Image Super-Resolution

Our super-resolution network is mostly similar to the
network used for image outpainting with two major differ-
ences. The first difference is that we do not decode any
image lower than the low-resolution scale (16x16), since
there is no need to edit visual details below the input reso-
lution scales. Thus, our decoder starts to generate images
at scale of 32x32 and enforces the downsampled sample of
the 32x32 images to be the same as the ground-truth 16x16
low-resolution image. The disentanglement loss for scales
of 64 and 128 are the same as the outpainting newtork. In

addition, we add skip connections from the encoder to the
decoder for the purpose of preserving low-resolution struc-
tural information. The encoder for the low-resolution image
is the same as the encoder used in image outpainting, which
is shown in Table 1. We also use the same optimizer and hy-
perparameters for both the image super-resolution and im-
age outpainting.

C. Cross-Domain Translation

For the cross-domain translation task we adapted the
MUNIT network[2]. In terms of network architecture, we
use exactly the same content and style encoders as the origi-
nal and we only modify the decoder, where we add an addi-
tional convolution for image output at the 128x128 resolu-
tion, and correspondingly the discriminator for it. We used
the default multi-resolution discriminator as in the origi-
nal implementation. For details of the architecture we re-
fer reader to [2] and its official github repository '. In
terms of losses, in addition to the original reconstruction
losses and discriminator losses, we calculated the proposed
disentangle loss Lg;sen: between the two levels as well as
the normalized diversity loss [4] on each level. We use
the following weights for losses: weight of adversarial loss
Agan = 1; weight of image reconstruction loss A\, = 10;
weight of style reconstruction loss \g,, = 1; weight of im-
age reconstruction loss \., = 1; weight of normalized
diversity loss A,4iv = 1; weight of the disentangle loss
Adisent = 1. An illustration of the network architecture
as well as the added losses is shown in Fig.2. We optimize
the network using an Adam optimizer with learning rate of
le — 4, betal of 0.5 and beta2 of 0.999 with batch size of
2.

D. Text-to-Image synthesis

Other than the image outpainting, image superresolution
and cross-domain translation, we also evaluate our proposed
multi-scale disentangle loss and the normalized diversity
loss on the task of text-to-image synthesis. Our implemen-
tation is based on the StackGAN++ [8]. We refer interested
reader to ” for the original implementation. We use pretrain
text embedding from [6], as in [8] and [5]. We keep the
original text embedding sampling unchanged but incorpo-
rate two changes within the decoder. First, we incorporate
the adaln layer [1] for each refine stage, which allows in-
jection of random latent vector at each stage. In compar-
ison the original implementation only inject latent random
vector at the init stage. Second, we added two more level
of image output to the original image. The original Stack-

Uhttps://github.com/NV1abs/MUNIT.
Zhttps://github.com/hanzhanggit/Stack GAN-v2



Method ‘ Quality |  Diversity T
MSGANI5] 18.64 0.661
Ours 20.88 0.668

Table 2: Quantitative comparison with state-of-the-art ap-
proaches on the cross-modal image-to-image translation
task.

GAN network outputs 64/128/256 images. We extended the
network to output 16/32 images. With the two changes in
place, we add the proposed disentangle loss and normalized
diversification loss to it. Detailed architecture of the modi-
fied StackGAN++ is illustrated in Fig.3. We tested our net-
work on the cub_200_2011 [7] birds dataset. As in the image
outpainting, image superresolution and cross-domain trans-
lation task, we achieve scale-specific editing by injecting
different latent codes at each scale at test time, as shown on
7. Quantitatively, our network achieved similar image qual-
ity (measured by FID) and slightly higher diversity (mea-
sured by LPIPS) as previous state-of-the-art from [5], as
shown by Table.2. We optimize the network using an Adam
optimizer with learning rate of 2e — 4, betal of 0.5 and
beta2 of 0.999 with a batch size of 4.
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Figure 2: The model architecture of modified MUNIT [2] decoder network.
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Figure 3: The model architecture of modified StackGAN++ [8] decoder network.



Figure 4: Qualitative results for scale-editing for image outpainting. We vary random variables at scale of 4 to edit high-level
features, vary random variables at scale of 8 and 16 to edit the middle-level features, and vary random variables at scales of
32, 64, 128 to edit the low-level features.
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Figure 5: Qualitative results for scale-editing for image super-resolution. We vary random variables at scale of 32 to edit
high-level features, and vary random variables at scales of 64 and 128 to edit the low-level features. Note that the variations
for this task are small in nature, and the low-level features in this super-resolution task only affect subtle textures. In the
super-resolution task, our main goal is to generate multimodal outputs while preserving identities.
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Figure 6: Qualitative results for scale-editing for cat2dog and dog2cat translation. Note that there are few modes of variation
compared to other tasks, due to 1). primarily a small dataset size (871 cat and 1364 dog images) and 2). there are only two
types of dogs (husky and samoyed) and mostly one type of cat (siamese) in the dataset.



“This bird has white
undertail coverts, a
red crown and breast

Latent Code

“Small bird with yellow
wings and white
wingbars, green tail and
small black beak.”
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“This bird is mostly
grey with a short
pointy bill”
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Figure 7: Qualitative results for scale-editing for text-to-image translation.



