
Supplementary Material for STINet: Spatio-Temporal-Interactive Networks for
Pedestrian Detection and Trajectory Prediction

Zhishuai Zhang1,2∗ Jiyang Gao1 Junhua Mao1 Yukai Liu1 Dragomir Anguelov1 Congcong Li1
1Waymo LLC 2 Johns Hopkins University

zzhang99@jhu.edu, {jiyanggao, junhuamao, liuyukai, dragomir, congcongli}@waymo.com

1. Details of network architecture

In this section we provide some details of network archi-
tecture omitted in the original paper due to space limit.

1.1. Pillar feature encoding

The backbone network of STINet takes 6 frames of point
clouds as input, which are calibrated to SDC’s pose at the
current (last) frame. Each point has 5 features: x, y, z, in-
tensity and elongation. The x and y coordinates fall in the
range of [0, 150], which is splitted into a pillar grid with
shape of 480 by 480. Each point is assigned to the closest
pillar and its first two features (i.e. x and y) are subtracted
by the pillar center position. Fully-connected layers with
shared weights are applied to all points and map the 5-d
feature vector of each point to a 64-d feature vector. After
the fully-connected layers, all feature vectors belonging to
the same pillar are aggregated by max-pooling. Thus each
frame produces a pillar feature map with shape of 480 by
480 by 64. To reduce memory usage, pillar feature maps
from consecutive two frames are concatenated, so finally
there are three pillar feature maps with shape of 480 by 480
by 128.

1.2. Backbone ResUNet

Pillar feature maps are processed by weight-sharing Re-
sUNets to generate backbone features. The ResUNet has
three ResNet blocks, with 2, 2 and 3 ResNet units respec-
tively. The output feature maps of these three ResNet blocks
have shapes of 480 × 480 × 64, 240 × 240 × 64 and
120 × 120 × 64 respectively. They are reshaped back to
480× 480× 64 with deconvolution, and the concatenation
with shape of 480× 480× 192 serves as the backbone fea-
ture for the corresponding frame.

∗ Work done during an internship at Waymo.

1.3. Temporal region proposal network

Three backbone features are concatenated into a fea-
ture map with shape of 480 by 480 by 576, from which a
temporal-aware feature map with shape of 480 by 480 by
256 is generated by convolutions. Two anchors with shape
of 75cm by 75cm and 150cm by 150cm are set at every
position of the temporal-aware feature map. 1× 1 convolu-
tions with 2, 10 and 12 neurons are applied on the feature
map to predict objectiveness, current frame bounding-box
regression and past frame bounding-box regression.

To mitigate the foreground-background imbalance issue,
we adopt online hard example mining for computing losses.
16,384 (i.e. 3.56% out of 480 × 480 × 2 anchors) anchors
with highest foreground classification loss are sampled to
compute final losses.

1.4. Proposal classification and regression

For each temporal proposal with the current frame box
p = (xp0, y

p
0 , w

p, lp, hp0) (x, y, w, l, h correspond to x co-
ordinate of box center, y coordinate of box center, width
of box, length of box and heading of box respectively), it
is assigned to a ground-truth object with largest IoU of the
current frame box gt = (xgt0 , y

gt
0 , w

gt
0 , l

gt
0 , h

gt
0). For the

current frame, we generate a 5-d regression target dp
0 =

(dxa0 , dy
a
0 , dw

a, dla, dha0):

dxp0 = (xgt0 − x
p
0)/

√
(xp0)

2 + (yp0)
2

dyp0 = (ygt0 − y
p
0)/

√
(xp0)

2 + (yp0)
2

dwp = log
wgt

wp

dlp = log
lgt

lp

dhp0 = sin
hgt0 − h

p
0

2

With similar equations, we also compute tfuture future re-
gression targets for proposal p against the corresponding

ground-truth object: dp
j = (dxpj , dy

p
j , dh

p
j) for each j ∈

{1, 2, · · · , tfuture}. Also a classification target sp of 1, 0 or
-1 is assigned based on the current frame IoU. The train-
ing objective of proposal classification and regression is the
weighted sum of classification loss, current frame regres-
sion loss and future frames regression loss as defined in the
equations below, where 1(x) is the indicator function and
returns 1 if x is true otherwise 0.

LP = λclsLcls + λcur regLcur reg + λfuture regLfuture reg

Lcls =

∑
p CrossEntropy(sp, ŝp)1(sp ≥ 0)∑

p 1(s
p ≥ 0)

Lcur reg =

∑
p SmoothL1(dp

0, d̂
p
0)1(s

p ≥ 1)∑
p 1(s

p ≥ 1)

Lfuture reg =

tfuture∑
j=1

∑
p SmoothL1(dp

j , d̂
p
j)1(s

p ≥ 1)∑
p 1(s

p ≥ 1)

2. Details of pedestrian groups
In order to do evaluation breakdown based on pedestrian

group size, we design a heuristic rule to discover pedestrian
groups and assign each pedestrian a group id as well as the
group size.

Algorithm 1: Identify pedestrian groups
Input : List of pedestrians pi with their locations

(xi, yi) and speeds (vxi, vyi), where i ∈
{1, 2, · · · , n}.

Output: Group id gi and size si for each pedestrian.
1 e[i, j]← 0 for i, j ∈ {1, · · · , n};
2 for i← 1 to n do
3 for j ← 1 to n do
4 if ||(xi − xj , yi − yj)|| ≤ 1.0 and

||(vxi − vxj , vyi − vyj)|| ≤ 1.0 and
0.5 ≤ ||(vxi,vyi)||

||(vxj ,vyj)|| ≤ 2.0 then
5 e[i, j]← 1;
6 end
7 end
8 end
9 {cc1, · · · , ccm} ←ConnectedComponents(e);

10 for i← 1 to m do
11 for j ←NodesOf(cci) do
12 gj ← i;
13 sj ← SizeOf(cci);
14 end
15 end

The heuristic rule is designed based on the locations and
speeds of pedestrians. Firstly a graph is built in which nodes

are pedestrians and two nodes are connected if the corre-
sponding two pedestrians have similar locations and speeds.
Then each connected component is consider as a group and
each pedestrian is assign the connected component id and
size. The detailed algorithm is described in Algorithm 1.

