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In the supplementary material, we first provide qualita-
tively visualizations of Kitti dataset, including analyses of
improving and failure cases. Second, we plot the curve of
sparsity level ρ vs. absolute relative difference (Abs Rel)
on Kitti dataset. Third, we present detailed training dia-
grams of how we initialize/pretrain the inpainting module I
and attention module A in our modular coordinate descent
algorithm. Lastly, we provide an additional figure to study
per-sample improvement with sorted RMSE-log error. Some
additionally qualitatively visualizations of NYUv2 dataset
are shown at the end.

1. Qualitatively Visualizations of Kitti
We present qualitative results of ARC on Kitti dataset.

Similar to Fig. 5 in the paper, we show examples over which
our ARC improves the depth prediction or makes worse pre-
dictions (as failure case).

From Fig. 1, we observe that the attention module A at-
tempts to mask out the sky, pavements, and overexposured
areas in both improvements and failure cases. In failed
cases, we find a pattern in some images that the sky and
pavements are connected (e.g., due to overexposure). Un-
der such condition, the attention module is very likely to
remove them together and the original vanishing point can-
not be reliably inferred, we believe important to estimate the
depth in Kitti images. Recall that Kitti images have similar
structures as the car is moving forward and the vanishing
point is around the image center in most images.

It is worth noting that in real training images of Kitti
dataset, the depth annotations are very sparse (due to Li-
DAR sensor) or missing in sky regions. So it is reason-
able that the model learns to remove sky regions in a lazy
way as there is no penalty from the depth loss on the sky
region. Moreover, interestingly, the ARC model learns to
paste “green trees” to the removed regions. We conjecture
that the green trees are large regions besides the road and re-
liable cues to estimate vanishing point and thus better depth
prediction.

2. (Cont’d) Study of Sparsity Level ρ
Here, We show the curve of how sparsity level ρ affects

the performance of ARC on Kitti dataset. As shown in
Fig. 2, the trend of the curve on Kitti dataset is similar to
the curve plotted on NYUv2 dataset, but the slope is quite
different. The performance changes very slightly with dif-
ferent sparsity level ρ. Considering the LiDAR depth map
is sparse and there is no depth annotation in the sky regions
of Kitti images, we believe this behavior matches our ex-
pectations. As shown in the previous section, the attention
module A is likely to focus on the sky or pavement. As
there is little supervision (no depth in sky regions) and large
plain regions (e.g., road), removing pixels from these re-
gions to different extents does not significantly affect the
overall depth prediction.
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Figure 2: Study of the sparsity factor ρ of the ARC model
on Kitti dataset.

With the comprehensive study of sparsity hyper-
parameter ρ from both Fig. 3 in the paper and Fig. 2, we
see that the performance drops when the sparsity level ρ in-
creases from 0.95 to 1.0 (strictly speaking, ρ = 0.999991).
Decrements in performance show that learning to remove a
reasonably portion of pixels, e.g., ρ = 0.90 or ρ = 0.95,
indeed helps improve depth prediction. Note that although
ρ = 1.0 expects no sparse attention map output from the at-
tention module, we observe training with ρ = 1.0 achieves
better performance than simply training without attention

1One cannot set ρ = 1.0 exactly due to the KL loss.
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Figure 1: Qualitative visualizations of our ARC on Kitti dataset including improvements as well as failure cases. White
arrows in the last column are used to highlight the regions over which the model improves or degrades visibly w.r.t depth
prediction. We use the same color bar for the visualizing depth in each row. (Best view in color and zoomed in.)
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Figure 3: Detailed training diagram of our attention module A. Note that A only shows in the real-to-synthetic cycle, e.g., the
part (a) in the diagram. The intuition behind two asymmetric cycles is that A should remove clutters in real samples instead
of clean synthetic images.
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modules. We believe one possible reason behind this ob-
servation is that learning A before its convergence during
training still introduce pixel/region removal, which leads to
more robust training as studied in literature [1].

3. Detailed Training Diagrams of A and I
To provide a clear idea of how we (pre)train our mod-

ules, we present two diagrams, the attention module A
and inpainting module I. For others, we train the real-to-
synthetic style translator T by simply using the CycleGAN
pipeline [2]. To train the depth predictor module D, we train
it simply using depth regression loss.

The training diagram of our attention module A is pre-
sented in Fig. 3. Note that A only appears in the left panel
Fig. 3 (a), which means A only learns where to mask out
in real images. We do not apply this to synthetic data, as
synthetically rendered images are clean without clutters.

Our detailed training diagram of module I is shown in
Fig. 4. The attention module A and the style translator T
are pretrained models and we color them in red for the pur-
pose of indication. Note that the output of I is the interme-
diate inpainting results and our final reconstructed images
still follow Eqn.(3) in the paper.
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Figure 4: Detailed training diagram of our inpainting mod-
ule I. Red blocks in the figure indicates that they are
pretrained modules, i.e., the attention module A and style
translator T .

4. Additional Per-Sample Improvement Study
We compute the per-image prediction of ARC and the

mix training baseline on NYUv2 testing set w.r.t RMS-log
and plot the result by sorting the baseline performance. As
shown in Fig. 5, ARC reduces errors over a majority of sam-
ples as there are more red dots below the blue curve visu-
ally. This observation matches the result shown in Fig. 4 in
the paper, where experimentally proves ARC reduces error
for around 70% of the sample in the dataset. More impor-
tantly, ARC reduces error even more when the mix training
baseline has larger prediction errors, which demonstrates
the effectiveness of removing “hard” pixels.

Figure 5: Per-sample improvement of ARC and the mix
training baseline on NYUv2 testing set w.r.t RMS-log.
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Figure 6: Additional qualitative visualizations of our ARC on NYUv2 dataset. (Best viewed in color and zoomed in.)
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