

# Supplementary Material for “Maintaining Discrimination and Fairness in Class Incremental Learning”

Bowen Zhao<sup>†,‡</sup> Xi Xiao<sup>†,‡</sup> Guojun Gan<sup>\*</sup> Bin Zhang<sup>‡</sup> Shutao Xia<sup>†,‡</sup>  
<sup>†</sup>Tsinghua University <sup>‡</sup>Peng Cheng Laboratory <sup>\*</sup>University of Connecticut  
zbw18@mails.tsinghua.edu.cn, {xiao, xiast}@sz.tsinghua.edu.cn  
bin.zhang@pcl.ac.cn, guojun.gan@uconn.edu

## 1. Other metrics for normalization factor.

As shown in Eq.(7), we normalize the weights for new classes based on the mean norms of the weight vectors. Here we evaluate other metrics,  $Median(\cdot)$  and  $Max(\cdot)$ . The results are shown in Table 1. We see that these choices produce similar results, which indicates the proposed method is not sensitive to the metric selection.

Table 1: Class incremental learning performance (top-5 accuracy %) on ImageNet100 with 10 incremental steps. The performance at the last incremental step and the average results over all the incremental steps except the first step are reported here.

|        | last | average |
|--------|------|---------|
| Mean   | 84.1 | 90.2    |
| Median | 83.9 | 90.0    |
| Max    | 85.1 | 90.8    |

## 2. Detailed results on ImageNet-1000

The detailed class incremental learning results on ImageNet-1000 with 10 incremental steps and 100 classes per step are presented in Table 2 (top-5 accuracy %) and Table 3 (top-1 accuracy %).

## 3. Detailed results on ImageNet-100

The detailed class incremental learning results (top-5 accuracy %) on ImageNet-100 with 10 steps and 10 classes per step are presented in Table 4.

## 4. Detailed results on CIFAR-100

The detailed class incremental learning results (top-1 accuracy %) on CIFAR-100 with 2, 5, 10 and 20 steps are presented in Table 5, Table 6, Table 7, and Table 8, respectively.

## References

- [1] Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with dual memory. In *The IEEE International Conference on Computer Vision (ICCV)*, October 2019. [2](#)
- [2] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari. End-to-end incremental learning. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 233–248, 2018. [2, 3](#)
- [3] Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis and machine intelligence*, 40(12):2935–2947, 2017. [2, 3](#)
- [4] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan, and Ling Shao. Random path selection for incremental learning. *ArXiv*, abs/1906.01120, 2019. [2](#)
- [5] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pages 2001–2010, 2017. [2, 3](#)
- [6] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incremental learning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 374–382, 2019. [2, 3](#)

Table 2: Class incremental learning performance (top-5 accuracy %) on ImageNet-1000 with 10 incremental steps and 100 classes per step. The average results over all the incremental steps except the first step are also reported. The results of the compared methods are reported in the original papers. The best results are in bold.

| #classes      | 100  | 200         | 300         | 400         | 500         | 600         | 700         | 800         | 900         | 1000        | Average     |
|---------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| LwF.MC [3, 5] | 90.1 | 77.7        | 63.9        | 51.8        | 43.0        | 35.5        | 31.6        | 28.4        | 26.4        | 24.3        | 42.5        |
| iCaRL [5]     | 90.0 | 83.0        | 77.5        | 70.5        | 63.0        | 57.5        | 53.5        | 50.0        | 48.0        | 44.0        | 60.8        |
| EEIL [2]      | 94.9 | <b>94.9</b> | 84.7        | 77.8        | 71.7        | 66.8        | 62.5        | 59.0        | 55.2        | 52.3        | 69.4        |
| BiC [6]       | 94.1 | 92.5        | <b>89.6</b> | <b>89.1</b> | 85.7        | 83.2        | 80.2        | 77.5        | 75.0        | 73.2        | 82.9        |
| IL2M [1]      | —    | —           | —           | —           | —           | —           | —           | —           | —           | —           | 78.3        |
| Ours          | 93.9 | 91.5        | 89.4        | 87.7        | <b>86.5</b> | <b>85.6</b> | <b>84.5</b> | <b>83.2</b> | <b>82.1</b> | <b>81.1</b> | <b>85.7</b> |
| Full          |      |             |             |             | —           |             |             |             | 89.1        |             | —           |

Table 3: Class incremental learning performance (top-1 accuracy %) on ImageNet-1000 with 10 incremental steps and 100 classes per step. The results of the compared methods are reported in IL2M [1]. The best results are in bold.

| #classes  | 100  | 200         | 300         | 400         | 500         | 600         | 700         | 800         | 900         | 1000        | Average     |
|-----------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| iCaRL [5] | —    | 57.9        | 48.8        | 40.9        | 35.5        | 31.8        | 28.8        | 25.5        | 24.2        | 22.7        | 35.1        |
| IL2M [1]  | —    | 74.2        | 68.8        | 62.4        | 56.4        | 53.3        | 52.1        | 48.8        | 47.6        | 43.6        | 56.4        |
| Ours      | 79.8 | <b>75.3</b> | <b>70.9</b> | <b>68.1</b> | <b>65.6</b> | <b>63.6</b> | <b>61.2</b> | <b>59.2</b> | <b>57.4</b> | <b>55.6</b> | <b>64.1</b> |
| Full      |      |             |             | —           |             |             |             |             | 69.8        |             | —           |

Table 4: Class incremental learning performance (top-5 accuracy %) on ImageNet-100 with 10 incremental steps and 10 classes per step. The best results are in bold.

| #classes      | 10   | 20          | 30          | 40          | 50          | 60          | 70          | 80          | 90          | 100         | Average     |
|---------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| LwF.MC [3, 5] | 99.2 | 95.4        | 86.2        | 74.1        | 63.9        | 55.1        | 50.3        | 44.5        | 40.4        | 36.6        | 60.7        |
| iCaRL [5]     | 99.5 | 97.8        | 94.1        | 91.8        | 88.0        | 82.7        | 77.3        | 73.2        | 67.3        | 63.8        | 81.8        |
| EEIL [2]      | 99.4 | <b>99.0</b> | <b>96.4</b> | <b>93.8</b> | 90.4        | 88.8        | 86.6        | 84.9        | 82.2        | 80.2        | 89.2        |
| BiC [6]       | 98.4 | 96.2        | 94.0        | 92.9        | <b>91.1</b> | 89.4        | 88.1        | 86.5        | 85.4        | <b>84.4</b> | 89.8        |
| RPS [4]       | 99.4 | 97.4        | 94.2        | 92.6        | 89.4        | 86.2        | 83.7        | 82.1        | 79.5        | 74.0        | 86.6        |
| Ours          | 98.8 | 96.8        | 94.5        | 93.1        | 90.5        | <b>89.9</b> | <b>88.8</b> | <b>88.0</b> | <b>86.2</b> | 84.1        | <b>90.2</b> |
| Full          |      |             |             | —           |             |             |             |             | 95.1        |             | —           |

Table 5: Class incremental learning performance (top-1 accuracy %) on CIFAR-100 with 2 incremental steps. The best results are in bold.

| #classes      | 50   | 100         | Average     |
|---------------|------|-------------|-------------|
| LwF.MC [3, 5] | 75.7 | 52.6        | 52.6        |
| iCaRL [5]     | 74.9 | 62.0        | 62.0        |
| EEIL [2]      | 74.1 | 60.8        | 60.8        |
| BiC [6]       | 76.4 | 64.9        | 64.9        |
| Ours          | 78.0 | <b>65.1</b> | <b>65.1</b> |

Table 6: Class incremental learning performance (top-1 accuracy %) on CIFAR-100 with 5 incremental steps and 20 classes per step. The best results are in bold.

| #classes      | 20   | 40          | 60          | 80          | 100         | Average     |
|---------------|------|-------------|-------------|-------------|-------------|-------------|
| LwF.MC [3, 5] | 82.3 | 62.6        | 50.3        | 41.1        | 34.6        | 47.1        |
| iCaRL [5]     | 82.9 | 73.1        | 66.0        | 59.7        | 54.3        | 63.3        |
| EEIL [2]      | 80.7 | 74.6        | 66.7        | 59.9        | 53.6        | 63.7        |
| BiC [6]       | 84.0 | 74.7        | 67.9        | 61.3        | 56.7        | 65.1        |
| Ours          | 83.5 | <b>75.5</b> | <b>68.7</b> | <b>63.1</b> | <b>59.2</b> | <b>66.6</b> |

Table 7: Class incremental learning performance (top-1 accuracy %) on CIFAR-100 with 10 incremental steps and 10 classes per step. The best results are in bold.

| #classes      | 10   | 20          | 30          | 40          | 50          | 60          | 70          | 80          | 90          | 100         | Average     |
|---------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| LwF.MC [3, 5] | 85.4 | 68.9        | 54.9        | 46.3        | 40.6        | 36.6        | 31.4        | 28.6        | 26.0        | 24.6        | 39.7        |
| iCaRL [5]     | 86.0 | 78.6        | 72.6        | 67.4        | 63.7        | 60.6        | 56.9        | 54.3        | 51.4        | 49.1        | 61.6        |
| EEIL [2]      | 80.2 | 80.9        | <b>76.1</b> | <b>71.3</b> | 66.2        | 62.5        | 58.9        | 54.8        | 52.2        | 49.5        | 63.6        |
| BiC [6]       | 90.3 | <b>82.2</b> | 75.2        | 70.2        | 65.5        | 61.3        | 57.7        | 55.2        | 53.7        | 50.2        | 63.5        |
| Ours          | 92.1 | 79.7        | 75.6        | 70.3        | <b>66.4</b> | <b>63.3</b> | <b>61.0</b> | <b>57.0</b> | <b>54.7</b> | <b>52.4</b> | <b>64.5</b> |

Table 8: Class incremental learning performance (top-1 accuracy %) on CIFAR-100 with 20 incremental steps and 5 classes per step. The best results are in bold.

| #classes      | 5    | 10          | 15          | 20          | 25          | 30          | 35          | 40          | 45          | 50          |  |
|---------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| LwF.MC [3, 5] | 89.4 | 69.1        | 59.7        | 50.9        | 44.6        | 38.9        | 34.9        | 30.6        | 27.7        | 25.7        |  |
| iCaRL [5]     | 89.7 | 82.6        | 77.7        | 74.6        | 70.9        | 68.6        | 66.0        | 63.4        | 61.1        | 59.4        |  |
| EEIL [2]      | 82.5 | 86.8        | <b>84.8</b> | <b>81.0</b> | <b>77.7</b> | <b>74.4</b> | <b>70.6</b> | <b>67.9</b> | <b>65.3</b> | <b>63.0</b> |  |
| BiC [6]       | 95.8 | 90.3        | 80.8        | 75.8        | 73.6        | 71.6        | 67.9        | 65.5        | 62.9        | 61.9        |  |
| Ours          | 97.6 | <b>91.6</b> | 82.3        | 76.5        | 73.9        | 71.6        | 69.6        | 66.3        | 65.2        | 62.4        |  |

  

| #classes      | 55          | 60          | 65          | 70          | 75          | 80          | 85          | 90          | 95          | 100         | Average     |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| LwF.MC [3, 5] | 24.0        | 22.0        | 20.0        | 19.1        | 18.3        | 17.1        | 16.3        | 15.7        | 14.9        | 14.3        | 29.7        |
| iCaRL [5]     | 58.0        | 56.3        | 54.9        | 52.9        | 51.1        | 50.0        | 48.0        | 47.1        | 46.0        | 44.9        | 59.7        |
| EEIL [2]      | <b>61.3</b> | <b>59.2</b> | <b>57.7</b> | 55.2        | 53.7        | 51.9        | <b>50.6</b> | 49.4        | 47.9        | 46.8        | <b>63.4</b> |
| BiC [6]       | 59.3        | 57.3        | 56.2        | <b>55.9</b> | 54.0        | <b>52.6</b> | 49.8        | <b>49.6</b> | <b>48.2</b> | <b>47.0</b> | 62.1        |
| Ours          | 61.1        | 58.9        | 56.9        | 55.3        | <b>54.5</b> | 52.0        | 50.1        | 48.0        | 46.8        | 46.0        | 62.6        |